OFFSET
0,3
COMMENTS
Number of walks of length n+1 between two adjacent vertices in the cycle graph C_5. Example: a(2)=3 because in the cycle ABCDE we have three walks of length 3 between A and B: ABAB, ABCB and AEAB. - Emeric Deutsch, Apr 01 2004
In general a(n,m)=2^n/m*Sum(k,0,m-1,Cos(2Pi*k/m)^(n+1)) gives number of walks of length n between two adjacent vertices in the cycle graph C_m. Here we have m=5. - Herbert Kociemba, May 31 2004
Counts walks of length n at the vertex of degree 3 of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is (L(n-2)+2*3^n)/5, or A099159. - Paul Barry, Oct 01 2004
Also, the cogrowth sequence for the 10-element dihedral group D5; that is a(n) is the number of words of length n+2 that reduce to the identity using the presentation <S,T | S^5, T^2, (ST)^2>. - Sean A. Irvine, Nov 04 2024
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1035
Index entries for linear recurrences with constant coefficients, signature (1,3,-2).
FORMULA
G.f.: -(-1+x)/(1-x-3*x^2+2*x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=3, 2*a(n)-3*a(n+1)-a(n+2)+a(n+3)=0}
Sum(-1/25*(-1-11*_alpha+6*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-_Z-3*_Z^2+2*_Z^3))
a(n-1)=2^n/5*Sum(k, 0, 4, Cos(2Pi*k/5)^(n+1)), n>=1 - Herbert Kociemba, May 31 2004
a(n)=((sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+2^(n+1)/5 - Paul Barry, Oct 01 2004
a(n) = (2^(n+1) + A000032(n+2)*(-1)^n)/5 - Ross La Haye, May 31 2006
MAPLE
spec := [S, {S=Sequence(Prod(Union(Prod(Sequence(Z), Z), Z, Z), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/((1-2x)(1+x-x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 3, -2}, {1, 0, 3}, 40] (* Harvey P. Dale, Jun 03 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved