login
A343566
Numbers k such that A343564(k) is divisible by 2*k.
1
1, 2, 3, 24, 63, 107, 263, 383, 504, 75414, 17389821, 47574810
OFFSET
1,2
EXAMPLE
a(4) = 24 is a term because A343564(24) = 96 is divisible by 2*24 = 48.
MAPLE
N:= 100000: # for terms <= N
P:= select(isprime, [seq(i, i=3..2*N)]):
f:= proc(n) local m, Q, q;
m:= ListTools:-BinaryPlace(P, 2*n);
Q:= convert(P[1..m], set);
Q:= Q intersect map(t -> 2*n-t, Q);
add(2*n mod q, q = Q);
end proc:
A343564:= map(f, [$1..N]):
select(t -> A[t] mod (2*t) = 0, [$1..N]);
CROSSREFS
Cf. A343564.
Sequence in context: A061355 A160618 A279335 * A057665 A371480 A354277
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Apr 20 2021
EXTENSIONS
a(11) and a(12) from Martin Ehrenstein, Apr 25 2021
STATUS
approved