login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343569
If n = Product (p_j^k_j) then a(n) = Product (2*(p_j^k_j + 1)), with a(1) = 1.
1
1, 6, 8, 10, 12, 48, 16, 18, 20, 72, 24, 80, 28, 96, 96, 34, 36, 120, 40, 120, 128, 144, 48, 144, 52, 168, 56, 160, 60, 576, 64, 66, 192, 216, 192, 200, 76, 240, 224, 216, 84, 768, 88, 240, 240, 288, 96, 272, 100, 312, 288, 280, 108, 336, 288, 288, 320, 360, 120, 960, 124, 384, 320, 130
OFFSET
1,2
FORMULA
a(n) = usigma(n) * 2^omega(n).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d) * usigma(n/d).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * 2^omega(d) * 2^omega(n/d).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} A343525(d).
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (2 (#[[1]]^#[[2]] + 1) & /@ FactorInteger[n]); Table[a[n], {n, 64}]
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = 2*f[k, 1]^f[k, 2] + 2; f[k, 2] = 1); factorback(f); \\ Michel Marcus, Apr 20 2021
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Apr 20 2021
STATUS
approved