login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295318
Sum of the products of the smaller and larger parts of the partitions of n into two distinct parts with the smaller part even.
2
0, 0, 0, 0, 6, 8, 10, 12, 34, 40, 46, 52, 100, 112, 124, 136, 220, 240, 260, 280, 410, 440, 470, 500, 686, 728, 770, 812, 1064, 1120, 1176, 1232, 1560, 1632, 1704, 1776, 2190, 2280, 2370, 2460, 2970, 3080, 3190, 3300, 3916, 4048, 4180, 4312, 5044, 5200, 5356
OFFSET
1,5
COMMENTS
Sum of the areas of the distinct rectangles with integer length and even width such that L + W = n, W < L. For example, a(12) = 52; the rectangles are 2 X 10 and 4 X 8 (6 X 6 is not included since we have W < L), so 2*10 + 4*8 = 52.
Sum of the ordinates from the ordered pairs (k,n*k-k^2) corresponding to integer points along the left side of the parabola b_k = n*k-k^2 where k is an even integer such that 0 < k < floor(n/2).
Sum of the areas of the trapezoids with bases n and n-2i and height i for even i in 0 <= i <= floor((n-1)/2). For a(n) the area formula for a trapezoid becomes (n+n-2i)*i/2 = (2n-2i)*i/2 = i*(n-i). For n=9, i=0,2,4 so a(9) = 0*(9-0) + 2*(9-2) + 4*(9-4) = 0 + 14 + 20 = 34. - Wesley Ivan Hurt, Mar 22 2018
Sum of the areas of the symmetric L-shaped polygons with long side n/2 and even width i in 0 <= i <= floor((n-1)/2). The area of each polygon is given by i^2+2i(n/2-i) = i^2+ni-2i^2 = i(n-i). For n=9, i=0,2,4 so 0(9-0) + 2(9-2) + 4(9-4) = 0 + 14 + 20 = 34. - Wesley Ivan Hurt, Mar 26 2018
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i) * ((i+1) mod 2).
Conjectures from Colin Barker, Nov 20 2017: (Start)
G.f.: 2*x^5*(3 + x + x^2 + x^3 + 2*x^4) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^3).
a(n) = a(n-1) + 3*a(n-4) - 3*a(n-5) - 3*a(n-8) + 3*a(n-9) + a(n-12) - a(n-13) for n>13.
(End)
a(n) = (1/384)*(-1)^(-(-1)^n/4)*((-2+2*(-1)^n)*((-1)^((4*n+2-(-1)^n)/4)+6*(-1)^((2*n+1)/4)+(-1)^((2-(-1)^n)/4))+4*n*(-6*n*(-1)^((2*n+1)/4)+(-1)^((-1)^n/4)*(-16-3*n*(1+(-1)^n)+4*n^2))). - Wesley Ivan Hurt, Dec 02 2017
EXAMPLE
For n=9, the partitions are 7 + 2 and 5 + 4, so a(9) = 7*2 + 5*4 = 34. - Michael B. Porter, Dec 05 2017
MAPLE
A295318:=n->add(i*(n-i)*((i+1) mod 2), i=1..floor((n-1)/2)): seq(A295318(n), n=1..100);
MATHEMATICA
Table[Sum[i (n - i) Mod[i + 1, 2], {i, Floor[(n - 1)/2]}], {n, 80}]
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, i*((i+1)%2)*(n-i)); \\ Altug Alkan, Mar 22 2018
CROSSREFS
Cf. A295317.
Sequence in context: A315852 A155776 A243826 * A343569 A331549 A184111
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Nov 19 2017
STATUS
approved