login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the products of the smaller and larger parts of the partitions of n into two distinct parts with the smaller part even.
2

%I #44 Apr 16 2018 19:00:54

%S 0,0,0,0,6,8,10,12,34,40,46,52,100,112,124,136,220,240,260,280,410,

%T 440,470,500,686,728,770,812,1064,1120,1176,1232,1560,1632,1704,1776,

%U 2190,2280,2370,2460,2970,3080,3190,3300,3916,4048,4180,4312,5044,5200,5356

%N Sum of the products of the smaller and larger parts of the partitions of n into two distinct parts with the smaller part even.

%C Sum of the areas of the distinct rectangles with integer length and even width such that L + W = n, W < L. For example, a(12) = 52; the rectangles are 2 X 10 and 4 X 8 (6 X 6 is not included since we have W < L), so 2*10 + 4*8 = 52.

%C Sum of the ordinates from the ordered pairs (k,n*k-k^2) corresponding to integer points along the left side of the parabola b_k = n*k-k^2 where k is an even integer such that 0 < k < floor(n/2).

%C Sum of the areas of the trapezoids with bases n and n-2i and height i for even i in 0 <= i <= floor((n-1)/2). For a(n) the area formula for a trapezoid becomes (n+n-2i)*i/2 = (2n-2i)*i/2 = i*(n-i). For n=9, i=0,2,4 so a(9) = 0*(9-0) + 2*(9-2) + 4*(9-4) = 0 + 14 + 20 = 34. - _Wesley Ivan Hurt_, Mar 22 2018

%C Sum of the areas of the symmetric L-shaped polygons with long side n/2 and even width i in 0 <= i <= floor((n-1)/2). The area of each polygon is given by i^2+2i(n/2-i) = i^2+ni-2i^2 = i(n-i). For n=9, i=0,2,4 so 0(9-0) + 2(9-2) + 4(9-4) = 0 + 14 + 20 = 34. - _Wesley Ivan Hurt_, Mar 26 2018

%H Vincenzo Librandi, <a href="/A295318/b295318.txt">Table of n, a(n) for n = 1..5000</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i) * ((i+1) mod 2).

%F Conjectures from _Colin Barker_, Nov 20 2017: (Start)

%F G.f.: 2*x^5*(3 + x + x^2 + x^3 + 2*x^4) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^3).

%F a(n) = a(n-1) + 3*a(n-4) - 3*a(n-5) - 3*a(n-8) + 3*a(n-9) + a(n-12) - a(n-13) for n>13.

%F (End)

%F a(n) = (1/384)*(-1)^(-(-1)^n/4)*((-2+2*(-1)^n)*((-1)^((4*n+2-(-1)^n)/4)+6*(-1)^((2*n+1)/4)+(-1)^((2-(-1)^n)/4))+4*n*(-6*n*(-1)^((2*n+1)/4)+(-1)^((-1)^n/4)*(-16-3*n*(1+(-1)^n)+4*n^2))). - _Wesley Ivan Hurt_, Dec 02 2017

%e For n=9, the partitions are 7 + 2 and 5 + 4, so a(9) = 7*2 + 5*4 = 34. - _Michael B. Porter_, Dec 05 2017

%p A295318:=n->add(i*(n-i)*((i+1) mod 2), i=1..floor((n-1)/2)): seq(A295318(n), n=1..100);

%t Table[Sum[i (n - i) Mod[i + 1, 2], {i, Floor[(n - 1)/2]}], {n, 80}]

%o (PARI) a(n) = sum(i=1, (n-1)\2, i*((i+1)%2)*(n-i)); \\ _Altug Alkan_, Mar 22 2018

%Y Cf. A295317.

%K nonn,easy

%O 1,5

%A _Wesley Ivan Hurt_, Nov 19 2017