login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034761 Dirichlet convolution of sigma(n) with itself. 10
1, 6, 8, 23, 12, 48, 16, 72, 42, 72, 24, 184, 28, 96, 96, 201, 36, 252, 40, 276, 128, 144, 48, 576, 98, 168, 184, 368, 60, 576, 64, 522, 192, 216, 192, 966, 76, 240, 224, 864, 84, 768, 88, 552, 504, 288, 96, 1608, 178, 588, 288, 644, 108, 1104, 288, 1152, 320, 360 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: zeta^2(x)zeta^2(x-1).
Multiplicative with a(2^e) = (e-1) 2^(e+2) + e + 5, a(p^e) = ((1+e)p^(e+3) - (3+e)(p^(e+2)-p+1) + 2)/(p-1)^3, p > 2. - Mitch Harris, Jun 27 2005 [corrected by Amiram Eldar, Oct 16 2022 and Sep 12 2023]
Equals A134577 * A000005. - Gary W. Adamson, Nov 02 2007
Also the Dirichlet convolution A000005 by A038040. - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (2*Pi^2 * log(n) + (4*gamma - 1)*Pi^2 + 24*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620 and Zeta'(2) = A073002. Equivalently, Sum_{k=1..n} a(k) ~ Pi^4 * n^2 * (2*log(n) - 1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) / 144, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 28 2019
MATHEMATICA
f[p_, e_] := ((e + 1)*p^(e + 3) - (e + 3)*(p^(e + 2) - p + 1) + 2)/(p - 1)^3; f[2, e_] := (e - 1)*2^(e + 2) + e + 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 16 2022 *)
CROSSREFS
Sequence in context: A024868 A262199 A276226 * A085796 A280641 A005887
KEYWORD
nonn,mult
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 17:36 EST 2024. Contains 370332 sequences. (Running on oeis4.)