login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280641
Numbers k such that k^3 has an odd number of digits and the middle digit is 1.
3
1, 6, 8, 23, 44, 45, 102, 106, 110, 114, 117, 121, 137, 148, 152, 153, 162, 168, 176, 185, 189, 194, 206, 210, 478, 488, 512, 533, 553, 560, 574, 580, 626, 639, 655, 662, 669, 671, 676, 682, 683, 684, 685, 693, 704, 710, 730, 731, 737, 742, 758, 761, 767, 771
OFFSET
1,2
COMMENTS
The sequence of cubes starts: 1, 216, 512, 12167, 85184, 91125, 1061208, 1191016, ...
LINKS
Jeremy Gardiner, Middle digit in cube numbers, Seqfan Mailing list, Dec 12 2016.
EXAMPLE
1^3 = (1), 114^3 = 148(1)544, 560^3 = 1756(1)6000
MATHEMATICA
a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2];
Select[Range[0, 771], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==1 &] (* Indranil Ghosh, Mar 06 2017 *)
PROG
(PARI)
isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 1);
for(k=0, 771, if(isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
(Python)
i=0
j=1
while i<=771:
n=str(i**3)
l=len(n)
if l%2 and n[(l-1)//2]=="1":
print(str(i), end=', ')
j+=1
i+=1 # Indranil Ghosh, Mar 06 2017
CROSSREFS
See A279420-A279429 for a k^2 version.
See A279430-A279431 for a k^2 version in base 2.
Sequence in context: A276226 A034761 A085796 * A005887 A349172 A119875
KEYWORD
nonn,base,easy,changed
AUTHOR
Lars Blomberg, Jan 07 2017
STATUS
approved