login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^3 has an odd number of digits and the middle digit is 1.
3

%I #13 Dec 23 2024 14:53:45

%S 1,6,8,23,44,45,102,106,110,114,117,121,137,148,152,153,162,168,176,

%T 185,189,194,206,210,478,488,512,533,553,560,574,580,626,639,655,662,

%U 669,671,676,682,683,684,685,693,704,710,730,731,737,742,758,761,767,771

%N Numbers k such that k^3 has an odd number of digits and the middle digit is 1.

%C The sequence of cubes starts: 1, 216, 512, 12167, 85184, 91125, 1061208, 1191016, ...

%H Lars Blomberg, <a href="/A280641/b280641.txt">Table of n, a(n) for n = 1..10000</a>

%H Jeremy Gardiner, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2016-December/017135.html">Middle digit in cube numbers</a>, Seqfan Mailing list, Dec 12 2016.

%e 1^3 = (1), 114^3 = 148(1)544, 560^3 = 1756(1)6000

%t a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2];

%t Select[Range[0, 771], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==1 &] (* _Indranil Ghosh_, Mar 06 2017 *)

%o (PARI)

%o isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 1);

%o for(k=0, 771, if(isok(k)==1, print1(k, ", "))); \\ _Indranil Ghosh_, Mar 06 2017

%o (Python)

%o i=0

%o j=1

%o while i<=771:

%o n=str(i**3)

%o l=len(n)

%o if l%2 and n[(l-1)//2]=="1":

%o print(str(i), end=', ')

%o j+=1

%o i+=1 # _Indranil Ghosh_, Mar 06 2017

%Y Cf. A280640, A280642-A280649, A181354.

%Y See A279420-A279429 for a k^2 version.

%Y See A279430-A279431 for a k^2 version in base 2.

%K nonn,base,easy

%O 1,2

%A _Lars Blomberg_, Jan 07 2017