%I #12 Jan 02 2023 12:30:52
%S 1,6,8,23,44,45,102,106,110,114,117,121,137,148,152,153,162,168,176,
%T 185,189,194,206,210,478,488,512,533,553,560,574,580,626,639,655,662,
%U 669,671,676,682,683,684,685,693,704,710,730,731,737,742,758,761,767,771
%N Numbers k such that k^3 has an odd number of digits and the middle digit is 1.
%C The sequence of cubes starts: 1, 216, 512, 12167, 85184, 91125, 1061208, 1191016, ...
%H Lars Blomberg, <a href="/A280641/b280641.txt">Table of n, a(n) for n = 1..10000</a>
%H Jeremy Gardiner, <a href="http://list.seqfan.eu/oldermail/seqfan/2016-December/017135.html">Middle digit in cube numbers</a>, Seqfan Mailing list, Dec 12 2016.
%e 1^3 = (1), 114^3 = 148(1)544, 560^3 = 1756(1)6000
%t a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2];
%t Select[Range[0, 771], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==1 &] (* _Indranil Ghosh_, Mar 06 2017 *)
%o (PARI)
%o isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 1);
%o for(k=0, 771, if(isok(k)==1, print1(k, ", "))); \\ _Indranil Ghosh_, Mar 06 2017
%o (Python)
%o i=0
%o j=1
%o while i<=771:
%o n=str(i**3)
%o l=len(n)
%o if l%2 and n[(l-1)//2]=="1":
%o print(str(i), end=', ')
%o j+=1
%o i+=1 # _Indranil Ghosh_, Mar 06 2017
%Y Cf. A280640, A280642-A280649, A181354.
%Y See A279420-A279429 for a k^2 version.
%Y See A279430-A279431 for a k^2 version in base 2.
%K nonn,base,easy
%O 1,2
%A _Lars Blomberg_, Jan 07 2017