login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n = Product (p_j^k_j) then a(n) = Product (2*(p_j^k_j + 1)), with a(1) = 1.
1

%I #8 Apr 20 2021 10:10:31

%S 1,6,8,10,12,48,16,18,20,72,24,80,28,96,96,34,36,120,40,120,128,144,

%T 48,144,52,168,56,160,60,576,64,66,192,216,192,200,76,240,224,216,84,

%U 768,88,240,240,288,96,272,100,312,288,280,108,336,288,288,320,360,120,960,124,384,320,130

%N If n = Product (p_j^k_j) then a(n) = Product (2*(p_j^k_j + 1)), with a(1) = 1.

%F a(n) = usigma(n) * 2^omega(n).

%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d) * usigma(n/d).

%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * 2^omega(d) * 2^omega(n/d).

%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} A343525(d).

%t a[1] = 1; a[n_] := Times @@ (2 (#[[1]]^#[[2]] + 1) & /@ FactorInteger[n]); Table[a[n], {n, 64}]

%o (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2*f[k,1]^f[k,2] + 2; f[k,2] = 1); factorback(f); \\ _Michel Marcus_, Apr 20 2021

%Y Cf. A001221, A034444, A034448, A034761, A064840, A107759, A333557, A343525.

%K nonn,mult

%O 1,2

%A _Ilya Gutkovskiy_, Apr 20 2021