login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173948
a(n) = denominator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.
16
1, 1, 25, 2025, 342225, 98903025, 4846248225, 121156205625, 101892368930625, 12328976640605625, 16878369020989100625, 28372538324282678150625, 28372538324282678150625, 1390254377889851229380625, 3905224547492592103330175625, 1409786061644825749302193400625, 5245813935380396613153461643725625
OFFSET
0,3
COMMENTS
Presumably conjectures:
For n>=2 numbers in this sequence are divisible by 25.
For n>=7 numbers in this sequence are divisible by 25^2.
LINKS
FORMULA
a(n) = denominator of 8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4), with the Hurwitz Zeta function, and Catalan is given in A006752. [See the name with Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2, and the Trigamma function Psi(1, z).]
MAPLE
r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
seq(denom(simplify(r(n))), n=0..16); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Denominator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Denominator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
PROG
(PARI) for(n=0, 20, print1(denominator(sum(k=0, n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
(Magma) [1] cat [Denominator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018
CROSSREFS
Cf. A006752, A120268, A173945, A173947 (numerators).
Sequence in context: A197671 A051112 A061843 * A279276 A197408 A197430
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Mar 03 2010
EXTENSIONS
Name simplified by Peter Luschny, Nov 14 2017
Formula reformulated. - Wolfdieter Lang, Nov 14 2017.
STATUS
approved