login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173948 a(n) = denominator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function. 13
1, 1, 25, 2025, 342225, 98903025, 4846248225, 121156205625, 101892368930625, 12328976640605625, 16878369020989100625, 28372538324282678150625, 28372538324282678150625, 1390254377889851229380625, 3905224547492592103330175625, 1409786061644825749302193400625, 5245813935380396613153461643725625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Presumably conjectures:

For n>=2 numbers in this sequence are divisible by 25.

For n>=7 numbers in this sequence are divisible by 25^2.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..250

FORMULA

a(n) = denominator of 8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4), with the Hurwitz Zeta function, and Catalan is given in A006752. [See the name with Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2, and the Trigamma function Psi(1, z).]

MAPLE

r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):

seq(denom(simplify(r(n))), n=0..16); # Peter Luschny, Nov 14 2017

MATHEMATICA

Table[Denominator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)

Denominator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)

PROG

(PARI) for(n=0, 20, print1(denominator(sum(k=0, n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018

(Magma) [1] cat [Denominator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018

CROSSREFS

Cf. A006752, A120268, A173945, A173947 (numerators).

Sequence in context: A197671 A051112 A061843 * A279276 A197408 A197430

Adjacent sequences:  A173945 A173946 A173947 * A173949 A173950 A173951

KEYWORD

frac,nonn

AUTHOR

Artur Jasinski, Mar 03 2010

EXTENSIONS

Name simplified by Peter Luschny, Nov 14 2017

Formula reformulated. - Wolfdieter Lang, Nov 14 2017.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 04:03 EST 2022. Contains 358353 sequences. (Running on oeis4.)