OFFSET
0,3
COMMENTS
Presumably conjectures:
For n>=2 numbers in this sequence are divisible by 25.
For n>=7 numbers in this sequence are divisible by 25^2.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
FORMULA
a(n) = denominator of 8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4), with the Hurwitz Zeta function, and Catalan is given in A006752. [See the name with Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2, and the Trigamma function Psi(1, z).]
MAPLE
r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
seq(denom(simplify(r(n))), n=0..16); # Peter Luschny, Nov 14 2017
MATHEMATICA
Table[Denominator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
Denominator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1} ], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
PROG
(PARI) for(n=0, 20, print1(denominator(sum(k=0, n-1, 1/(4*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 22 2018
(Magma) [1] cat [Denominator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 22 2018
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Mar 03 2010
EXTENSIONS
Name simplified by Peter Luschny, Nov 14 2017
Formula reformulated. - Wolfdieter Lang, Nov 14 2017.
STATUS
approved