Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:45:51
%S 1,1,25,2025,342225,98903025,4846248225,121156205625,101892368930625,
%T 12328976640605625,16878369020989100625,28372538324282678150625,
%U 28372538324282678150625,1390254377889851229380625,3905224547492592103330175625,1409786061644825749302193400625,5245813935380396613153461643725625
%N a(n) = denominator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.
%C Presumably conjectures:
%C For n>=2 numbers in this sequence are divisible by 25.
%C For n>=7 numbers in this sequence are divisible by 25^2.
%H G. C. Greubel, <a href="/A173948/b173948.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = denominator of 8*Catalan + Pi^2 - Zeta(2, (4*n + 1)/4), with the Hurwitz Zeta function, and Catalan is given in A006752. [See the name with Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2, and the Trigamma function Psi(1, z).]
%p r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):
%p seq(denom(simplify(r(n))), n=0..16); # _Peter Luschny_, Nov 14 2017
%t Table[Denominator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 14 2017 *)
%t Denominator[Table[Sum[1/(4*k + 1)^2, {k, 0, n-1} ], {n, 0, 20}]] (* _Vaclav Kotesovec_, Nov 14 2017 *)
%o (PARI) for(n=0,20, print1(denominator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ _G. C. Greubel_, Aug 22 2018
%o (Magma) [1] cat [Denominator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // _G. C. Greubel_, Aug 22 2018
%Y Cf. A006752, A120268, A173945, A173947 (numerators).
%K frac,nonn
%O 0,3
%A _Artur Jasinski_, Mar 03 2010
%E Name simplified by _Peter Luschny_, Nov 14 2017
%E Formula reformulated. - _Wolfdieter Lang_, Nov 14 2017.