The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173955 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4))/16 where Zeta(n, a) is the Hurwitz Zeta function. 11
 0, 1, 58, 7459, 192404, 70791869, 37930481726, 3100675399831, 3000384410275816, 3016572632600497, 512004171837010018, 950047080453398607307, 2104850677799349861903388, 609822785846772474028096357, 611130542819711220012487366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The denominators are given in A173954. a(n+2)/A173954(n+2) = (Zeta(2, 3/4) - Zeta(2, n + 7/4))/16 gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(4*n + 3). In the limit n -> infinity the series value is Zeta(2,3/4)/16, with the Hurwitz Zeta function, and it is given in A247037. - Wolfdieter Lang, Nov 15 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 1..250 FORMULA a(n) = numerator of r(n) with r(n) =  (Pi^2 - 8*Catalan - Zeta(2, n - 1/4))/16, with the Hurwitz Zeta function Z(2, z), and the Catalan constant is given in A006752. With Zeta(2, 3/4) = Pi^2 - 8*Catalan this is the formula given in the name. Numerator of Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. - G. C. Greubel, Aug 23 2018 MAPLE r := n -> (Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4))/16: seq(numer(simplify(r(n))), n=1..15); # Peter Luschny, Nov 14 2017 MATHEMATICA Table[Numerator[FunctionExpand[(Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4])/16]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *) Numerator[Table[8*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *) Numerator[Table[Sum[1/(4*k + 3)^2, {k, 0, n-2}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *) PROG (PARI) for(n=1, 20, print1(numerator(sum(k=0, n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018 (MAGMA)  cat [Numerator((&+[1/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018 CROSSREFS Cf. A006752, A120268, A173945, A173947, A173948, A173949, A173953, A173954, A247037. Sequence in context: A282438 A308391 A128934 * A243466 A201988 A116103 Adjacent sequences:  A173952 A173953 A173954 * A173956 A173957 A173958 KEYWORD frac,nonn,easy AUTHOR Artur Jasinski, Mar 03 2010 EXTENSIONS Numbers changed according to the old (or new) Mathematica program, and edited by Wolfdieter Lang, Nov 14 2017 Name simplified by Peter Luschny, Nov 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:34 EST 2021. Contains 349463 sequences. (Running on oeis4.)