login
A248818
Numbers n such that the digits of antisigma(n) end in phi(n).
0
3, 20, 39, 119, 224, 351, 799, 879, 1076, 1504, 4064, 6879, 7999, 56847, 169640, 346879, 470975, 893520, 1955776, 7546879, 17604064, 36722175, 79999999, 95546879, 222503984, 580483743, 584057247, 626394816, 7999999999, 17194139104
OFFSET
1,1
COMMENTS
Similar to A024816 but using antisigma(n) instead of sigma(n).
All the semiprimes of the form 8*10^k-1 are terms. - Giovanni Resta, May 29 2016
EXAMPLE
Antisigma of 879 is (879 * 880) / 2 - sigma(879) = 386760 - 1176 = 385584 and phi(879) = 584.
MAPLE
with(numtheory): P:=proc(q) local a, n;
for n from 1 to q do then a:=ilog10(phi(n))+1;
if phi(n)=((n*(n+1)/2-sigma(n)) mod 10^a) then print(n);
fi; od; end: P(10^9);
CROSSREFS
Sequence in context: A254501 A031106 A337478 * A268602 A344890 A072472
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 15 2014
EXTENSIONS
a(18)-a(30) from Giovanni Resta, May 29 2016
STATUS
approved