login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248821
Number of cubes that divide 1!*2!*3!*...*n!.
5
1, 1, 1, 2, 6, 10, 36, 64, 220, 468, 1024, 2052, 7590, 16224, 50400, 142800, 246240, 510300, 2261952, 3545856, 14152320, 40986000, 68428800, 178293960, 784274400, 1526805504, 2782080000, 9307872000, 15858633600, 28225260000, 143730892800, 225167040000
OFFSET
1,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 400 terms from Clark Kimberling)
EXAMPLE
a(5) counts these cubes that divide 34560: 1^3, 2^3, 3^3, 4^3, 6^3, 12^3.
MAPLE
b:= proc(n) option remember; add(i[2]*x^numtheory[pi](i[1]),
i=ifactors(n)[2])+`if`(n=1, 0, b(n-1))
end:
c:= proc(n) option remember; b(n)+`if`(n=1, 0, c(n-1)) end:
a:= n->(p->mul(iquo(coeff(p, x, i), 3)+1, i=1..degree(p)))(c(n)):
seq(a(n), n=1..30); # Alois P. Heinz, Oct 16 2014
MATHEMATICA
z = 40; p[n_] := Product[k!, {k, 1, n}];
f[n_] := f[n] = FactorInteger[p[n]];
r[m_, x_] := r[m, x] = m*Floor[x/m]
u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
t[m_, n_] := Apply[Times, 1 + r[m, v[n]]/m]
m = 3; Table[t[m, n], {n, 1, z}] (* A248821 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 15 2014
STATUS
approved