login
A175999
Decimal expansion of the definite integral of x^(1/x) for x = 0 to 1.
3
3, 5, 3, 4, 9, 6, 8, 0, 0, 7, 0, 1, 4, 2, 2, 0, 5, 5, 4, 6, 5, 8, 3, 6, 3, 7, 0, 2, 0, 6, 6, 9, 8, 2, 4, 5, 0, 9, 0, 2, 5, 6, 8, 0, 0, 8, 0, 8, 7, 7, 3, 9, 9, 3, 8, 0, 7, 8, 0, 7, 9, 2, 4, 6, 0, 7, 8, 0, 0, 1, 8, 4, 5, 9, 7, 0, 0, 2, 5, 3, 3, 9, 0, 4, 0, 4, 0, 2, 9, 0, 6, 4, 2, 7, 6, 5, 0, 9, 1, 9, 5, 2, 3, 2, 6
OFFSET
0,1
LINKS
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see Figure 5.
EXAMPLE
0.3534968007014220554658363702066982450902568008087739938078079246078001845970...
MATHEMATICA
RealDigits[ NIntegrate[x^(1/x), {x, 0, 1}, WorkingPrecision -> 128], 10, 111][[1]] (* Robert G. Wilson v, Mar 10 2013 *)
PROG
(PARI) intnum(x=exp(-lambertw(default(realbitprecision)*log(2)+2)), 1, x^x^-1) \\ Charles R Greathouse IV, Feb 23 2022
(PARI) intnum(x=1e-9, 1, x^x^-1) \\ good for up to 29 billion digits; Charles R Greathouse IV, Feb 23 2022
CROSSREFS
Cf. A073229 (decimal expansion of e^(1/e)).
Sequence in context: A374624 A210606 A254327 * A236965 A259684 A214287
KEYWORD
cons,nonn
AUTHOR
Dylan Hamilton, Nov 05 2010
STATUS
approved