|
|
A176002
|
|
Numbers n such that 15*prime(n)+{-4,-2,2,4} are all primes.
|
|
0
|
|
|
4, 6, 34, 176, 608, 1023, 1338, 1377, 1555, 1980, 2054, 2850, 2893, 3061, 3263, 3572, 3977, 4029, 4244, 4405, 6099, 6548, 7203, 7348, 7350, 7572, 7574, 9028, 10657, 11976, 12215, 12874, 13247, 13388, 13432, 14537, 14813, 15115, 15412, 15509
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers n such that 15*prime(n)-4, 15*prime(n)-2, 15*prime(n)+2 and 15*prime(n)+4 are primes.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1)=4 because 15*prime(4)-4=101, 15*prime(4)-2=103, 15*prime(4)+2=107 and 15*prime(4)+4=109.
|
|
MATHEMATICA
|
p15Q[n_]:=And@@PrimeQ/@(15 Prime[n]+{-4, -2, 2, 4}); Select[Range[16000], p15Q] (* Harvey P. Dale, Mar 20 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|