

A073229


Decimal expansion of e^(1/e).


26



1, 4, 4, 4, 6, 6, 7, 8, 6, 1, 0, 0, 9, 7, 6, 6, 1, 3, 3, 6, 5, 8, 3, 3, 9, 1, 0, 8, 5, 9, 6, 4, 3, 0, 2, 2, 3, 0, 5, 8, 5, 9, 5, 4, 5, 3, 2, 4, 2, 2, 5, 3, 1, 6, 5, 8, 2, 0, 5, 2, 2, 6, 6, 4, 3, 0, 3, 8, 5, 4, 9, 3, 7, 7, 1, 8, 6, 1, 4, 5, 0, 5, 5, 7, 3, 5, 8, 2, 9, 2, 3, 0, 4, 7, 0, 9, 8, 8, 5, 1, 1, 4, 2, 9, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

e^(1/e) = 1/((1/e)^(1/e)) (reciprocal of A072364).
Let w(n+1)=A^w(n); then w(n) converges if and only if (1/e)^e <= A <= e^(1/e) (see the comments in A073230) for initial value w(1)=A. If A=e^(1/e) then lim_{n>infinity} w(n) = e.  Benoit Cloitre, Aug 06 2002; corrected by Robert FERREOL, Jun 12 2015
x^(1/x) is maximum for x = e and the maximum value is e^(1/e). This gives an interesting and direct proof that 2 < e < 4 as 2^(1/2) < e^(1/e) > 4^(1/4) while 2^(1/2) = 4^(1/4).  Amarnath Murthy, Nov 26 2002
For large n, A234604(n)/A234604(n1) converges to e^(1/e).  Richard R. Forberg, Dec 28 2013
Value of the unique base b > 0 for which the exponential curve y=b^x and its inverse y=log_b(x) kiss each other; the kissing point is (e,e).  Stanislav Sykora, May 25 2015
Actually, there is another base with such property, b=(1/e)^e with kiss point (1/e,1/e).  Yuval Paz, Dec 29 2018


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000
Simon Plouffe, exp(1/e)
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151164; see Definition 4.1 on p. 158.
Eric Weisstein's World of Mathematics, Steiner's Problem


FORMULA

Equals 1 + Integral_{x = 1/e..1} (1 + log(x))/x^x dx = 1  Integral_{x = 0..1/e} (1 + log(x))/x^x dx.  Peter Bala, Oct 30 2019
Equals Sum_{k>=0} exp(k)/k!.  Amiram Eldar, Aug 13 2020


EXAMPLE

1.44466786100976613365833910859...


MAPLE

evalf[110](exp(exp(1))); # Muniru A Asiru, Dec 29 2018


MATHEMATICA

RealDigits[ E^(1/E), 10, 110] [[1]]


PROG

(PARI) exp(1)^exp(1)


CROSSREFS

Cf. A001113 (e), A068985 (1/e), A073230 ((1/e)^e), A072364 ((1/e)^(1/e)), A073226 (e^e).
Sequence in context: A114742 A273909 A098013 * A116446 A102126 A277433
Adjacent sequences: A073226 A073227 A073228 * A073230 A073231 A073232


KEYWORD

cons,nonn


AUTHOR

Rick L. Shepherd, Jul 22 2002


STATUS

approved



