login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236965
Number of nonzero quartic residues modulo the n-th prime.
1
1, 1, 1, 3, 5, 3, 4, 9, 11, 7, 15, 9, 10, 21, 23, 13, 29, 15, 33, 35, 18, 39, 41, 22, 24, 25, 51, 53, 27, 28, 63, 65, 34, 69, 37, 75, 39, 81, 83, 43, 89, 45, 95, 48, 49, 99, 105, 111, 113, 57, 58, 119, 60, 125, 64, 131, 67, 135, 69, 70, 141, 73, 153, 155, 78
OFFSET
1,4
FORMULA
For odd primes, if prime(n)=4k+1 then a(n)=(prime(n)-1)/4, if prime(n)=4k+3 then a(n)=(prime(n)-1)/2.
a(n) = numerator(1/2 - 1/(prime(n)+1)). - Michel Marcus, Feb 26 2019
EXAMPLE
a(5)=5 for x^4 (mod 11=prime(5)) equals 1, 3, 4, 5, 9.
PROG
(PARI) a(n) = numerator(1/2 - 1/(prime(n)+1)); \\ Michel Marcus, Feb 26 2019
(PARI) a(n) = my(p=prime(n)); sum(k=0, p-1, m = Mod(k, p); m && ispower(Mod(k, p), 4)); \\ Michel Marcus, Feb 26 2019
(Python)
from sympy import prime
from fractions import Fraction
def a(n): return (Fraction(1, 2) - Fraction(1, (prime(n)+1))).numerator
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Jun 04 2021
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Carmine Suriano, Apr 22 2014
STATUS
approved