OFFSET
1,4
FORMULA
For odd primes, if prime(n)=4k+1 then a(n)=(prime(n)-1)/4, if prime(n)=4k+3 then a(n)=(prime(n)-1)/2.
a(n) = numerator(1/2 - 1/(prime(n)+1)). - Michel Marcus, Feb 26 2019
EXAMPLE
a(5)=5 for x^4 (mod 11=prime(5)) equals 1, 3, 4, 5, 9.
PROG
(PARI) a(n) = numerator(1/2 - 1/(prime(n)+1)); \\ Michel Marcus, Feb 26 2019
(PARI) a(n) = my(p=prime(n)); sum(k=0, p-1, m = Mod(k, p); m && ispower(Mod(k, p), 4)); \\ Michel Marcus, Feb 26 2019
(Python)
from sympy import prime
from fractions import Fraction
def a(n): return (Fraction(1, 2) - Fraction(1, (prime(n)+1))).numerator
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Jun 04 2021
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Carmine Suriano, Apr 22 2014
STATUS
approved