login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonzero quartic residues modulo the n-th prime.
1

%I #26 Jun 04 2021 02:45:12

%S 1,1,1,3,5,3,4,9,11,7,15,9,10,21,23,13,29,15,33,35,18,39,41,22,24,25,

%T 51,53,27,28,63,65,34,69,37,75,39,81,83,43,89,45,95,48,49,99,105,111,

%U 113,57,58,119,60,125,64,131,67,135,69,70,141,73,153,155,78

%N Number of nonzero quartic residues modulo the n-th prime.

%F For odd primes, if prime(n)=4k+1 then a(n)=(prime(n)-1)/4, if prime(n)=4k+3 then a(n)=(prime(n)-1)/2.

%F a(n) = numerator(1/2 - 1/(prime(n)+1)). - _Michel Marcus_, Feb 26 2019

%e a(5)=5 for x^4 (mod 11=prime(5)) equals 1, 3, 4, 5, 9.

%o (PARI) a(n) = numerator(1/2 - 1/(prime(n)+1)); \\ _Michel Marcus_, Feb 26 2019

%o (PARI) a(n) = my(p=prime(n)); sum(k=0, p-1, m = Mod(k,p); m && ispower(Mod(k,p), 4)); \\ _Michel Marcus_, Feb 26 2019

%o (Python)

%o from sympy import prime

%o from fractions import Fraction

%o def a(n): return (Fraction(1, 2) - Fraction(1, (prime(n)+1))).numerator

%o print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Jun 04 2021

%Y Cf. A000040, A130290, A236959, A306591.

%K nonn,frac

%O 1,4

%A _Carmine Suriano_, Apr 22 2014