login
A245080
Numbers such that omega(a(n)) is a proper divisor of bigomega(a(n)).
2
4, 8, 9, 16, 24, 25, 27, 32, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 125, 128, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 243, 248, 250, 256, 289, 296, 297, 324, 328, 336, 343, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459
OFFSET
1,1
COMMENTS
All proper powers of any number greater than 1 (A001597(n), n>1) are a subset of this sequence. On the other hand, this is a subset of A067340 which admits also numbers k for which bigomega(k) = omega(k). In particular, prime numbers are excluded.
The density of these numbers, i.e., the ratio n/a(n), apparently decreases with n, reaching 0.04420... for n = 10000000. Conjecture: n/a(n) might have a nonzero limit below 0.0427 (the density found in the interval 9500000 < n <= 10000000).
There are 40134838 terms in the range 10^9 <= k <= 2*10^9. - Hugo Pfoertner, Oct 28 2024
LINKS
EXAMPLE
240 is in the sequence because 240=5^1*3^1*2^4. Hence omega(240)=3 (three distinct prime divisors) is a proper divisor of bigomega(240)=6 (six prime divisors with multiplicity).
MATHEMATICA
Select[Range[500], Divisible[PrimeOmega[#], PrimeNu[#]] && PrimeNu[#] != PrimeOmega[#] &] (* Kritsada Moomuang, Oct 27 2024 *)
PROG
(PARI) OmegaTest(n)=(bigomega(n)>omega(n))&&(bigomega(n)%omega(n)==0);
Ntest(nmax, test)={my(k=1, n=0, v); v=vector(nmax); while(1, n++; if(test(n), v[k]=n; k++; if(k>nmax, break)); ); return(v); }
Ntest(20000, OmegaTest)
(PARI) is_a245080(n) = my(F=factor(n), o=omega(F), O=bigomega(F)); O>o && O%o==0; \\ Hugo Pfoertner, Oct 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Stanislav Sykora, Jul 11 2014
STATUS
approved