login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100657
Composite numbers whose prime factors all have the same digital root.
1
4, 8, 9, 16, 22, 25, 27, 32, 44, 49, 58, 64, 81, 88, 94, 115, 116, 121, 125, 128, 166, 169, 176, 188, 202, 205, 232, 242, 243, 256, 274, 289, 295, 301, 319, 332, 343, 346, 352, 361, 376, 382, 403, 404, 427, 454, 464, 484, 512, 517, 526, 529, 548, 553, 562, 565
OFFSET
1,1
LINKS
EXAMPLE
2005 = 5*401. 5 and 401 have the same digital root 5.
2038 = 2*1019. 2 and 1019 have the same digital root 2.
MATHEMATICA
sdrQ[n_]:=CompositeQ[n]&&Length[Union[1+Mod[#-1, 9]&/@FactorInteger[n][[All, 1]]]]==1; Select[Range[600], sdrQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 11 2019 *)
PROG
(PARI) samedr(n) = { local(j); for(j=1, n, if(issamedr(j), print1(j", ")) ) } issamedr(n) = \Test if all factors of n have the same digital root. { local(f, a, ln, x); f=0; a=ifactor(n); ln=length(a); for(x=1, ln-1, if(droot(a[x])<>droot(a[x+1]), f=1; break)); if(f==0&ln>1, return(1), return(0)) } droot(n) = \The digital root of a number. { local(x); x= n%9; if(x>0, return(x), return(9)) }
CROSSREFS
Sequence in context: A003624 A280387 A243180 * A372280 A361204 A245080
KEYWORD
base,easy,nonn
AUTHOR
Cino Hilliard, Jan 02 2005
STATUS
approved