login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100660
Composite numbers whose prime factors have different digital roots.
0
6, 10, 14, 15, 21, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 62, 65, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 95, 102, 105, 106, 111, 114, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 155, 158, 159, 161, 165, 170, 177, 178, 182, 183
OFFSET
1,1
EXAMPLE
399=3*7*19. digital roots = 3,7,1 all different.
PROG
(PARI) nsamedr2(n) = { local(j); for(j=2, n, if(!isprime(j)&issamedr2(j), print1(j", ")) ) } issamedr2(n) = { local(f, a, ln, x, y, dr); f=0; a=ifactor(n); ln=length(a); for(x=1, ln-1, for(y=x+1, ln, if(droot(a[x])==droot(a[y]), return(0)); if(droot(a[x])<>droot(a[y]), f=1, f=0))); if(f==1&ln>1, return(1), return(0)) } droot(n) = \ the digital root of a number. { local(x); x= n%9; if(x>0, return(x), return(9)) } ifactor(n) = \The vector of integer factors of n with multiplicity { local(f, j, k, flist); flist=[]; f=Vec(factor(n)); for(j=1, length(f[1]), for(k = 1, f[2][j], flist = concat(flist, f[1][j]) ); ); return(flist) }
CROSSREFS
Sequence in context: A338905 A093772 A046400 * A088709 A225706 A063078
KEYWORD
base,easy,nonn
AUTHOR
Cino Hilliard, Jan 02 2005
STATUS
approved