login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100661
Quet transform of A006519 (see A101387 for definition). Also, least k such that n+k has at most k ones in its binary representation.
6
1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5, 6, 5, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 4, 5
OFFSET
1,2
COMMENTS
If n+a(n) has exactly a(n) 1's in binary, then a(n+1) = a(n)+1, but if n+a(n) has less than a(n) 1's, then a(n+1) = a(n)-1. a(n) is the number of terms needed to represent n as a sum of numbers of the form 2^k-1. [Jeffrey Shallit]
Is a(n) = A080468(n+1)+1?
Compute a(n) by repeatedly subtracting the largest number 2^k-1<=n until zero is reached. The number of times a term was subtracted gives a(n). Examples: 5 = 3 + 1 + 1 ==> a(5) = 3 6 = 3 + 3 ==> a(6) = 2. Replace all zeros in A079559 by -1, then the a(n) are obtained as cumulative sums (equivalent to the generating function given); see fxtbook link. [Joerg Arndt, Jun 12 2006]
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 1.26.3, p. 72.
David Wasserman, Quet transform + PARI code [Cached copy]
FORMULA
a(2^k-1) = 1. For 2^k <= n <= 2^(k+1)-2, a(n) = a(n-2^k+1)+1.
G.f.: x*(2*(1-x)*prod(n>=1, (1+x^(2^n-1))) - 1)/((1-x)^2) = x*(1 + 2*x + 1*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 1*x^6 + 2*x^7 + 3*x^8 + 2*x^9 + ...) [Joerg Arndt, Jun 12 2006]
EXAMPLE
a(4) = 2 because 4+2 (110) has two 1's, but 4+1 (101) has more than one 1.
Conjecture (Joerg Arndt):
a(n) is the number of bits in the binary words of sequence A108918
......A108918.A108918..n..=..n.=.(sum.of.term.2^k-1)
........00001.1.....00001.=..1.=..1
........00011.2.....00010.=..2.=..1.+.1
........00010.1.....00011.=..3.=..3
........00101.2.....00100.=..4.=..3.+.1
........00111.3.....00101.=..5.=..3.+.1.+.1
........00110.2.....00110.=..6.=..3.+.3
........00100.1.....00111.=..7.=..7
........01001.2.....01000.=..8.=..7.+.1
........01011.3.....01001.=..9.=..7.+.1.+.1
........01010.2.....01010.=.10.=..7.+.3
........01101.3.....01011.=.11.=..7.+.3.+.1
........01111.4.....01100.=.12.=..7.+.3.+.1.+.1
........01110.3.....01101.=.13.=..7.+.3.+.3
........01100.2.....01110.=.14.=..7.+.7
........01000.1.....01111.=.15.=.15
MAPLE
hb:= n-> `if`(n=1, 0, 1+hb(iquo (n, 2))):
a:= proc(n) local m, t;
m:= n;
for t from 0 while m>0 do
m:= m - (2^(hb(m+1))-1)
od; t
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jan 22 2011
MATHEMATICA
hb[n_] := If[n==1, 0, 1+hb[Quotient[n, 2]]];
a[n_] := Module[{m=n, t}, For[t=0, m>0, t++, m = m - (2^(hb[m+1])-1)]; t];
Array[a, 100] (* Jean-François Alcover, Oct 31 2020, after Alois P. Heinz *)
PROG
(Sage) A100661 = lambda n: next(k for k in PositiveIntegers() if (n+k).digits(base=2).count(1) <= k) # D. S. McNeil, Jan 23 2011
(PARI)
{ /* method: repeatedly subtract Mersenne numbers */
local(m, ct);
if ( n<=1, return(n) );
m = 1;
while ( n>m, m<<=1 );
m -= 1;
while ( m>n, m>>=1 );
/* here m=2^k-1 and m<=n */
ct = 0;
while ( n, while (m<=n, n-=m; ct+=1); m>>=1 );
return( ct );
}
vector(100, n, A100661(n)) /* show terms */
/* Joerg Arndt, Jan 22 2011 */
(PARI)
TInverse(v)=
{
local(l, w, used, start, x);
l = length(v); w = vector(l); used = vector(l); start = 1;
for (i = 1, l,
while (start <= l && used[start], start++);
x = start;
for (j = 2, v[i], x++; while (x <= l && used[x], x++));
if (x > l,
return (vector(i - 1, k, w[k]))
, /* else */
w[i] = x; used[x] = 1
)
);
return(w);
}
PInverse(v)=
{
local(l, w);
l = length(v); w = vector(l);
for (i = 1, l, if (v[i] <= l, w[v[i]] = i));
return(w);
}
T(v)=
{
local(l, w, c);
l = length(v); w = vector(l);
for (n = 1, l,
if (v[n],
c = 0;
for (m = 1, n - 1, if (v[m] < v[n], c++));
w[n] = v[n] - c
, /* else */
return (vector(n - 1, i, w[i]))
)
);
return(w);
}
Q(v)=T(PInverse(TInverse(v)));
/* compute terms: */
v = vector(150);
for (n = 1, 150, m = n; x = 1; while (!(m%2), m\=2; x *= 2); v[n] = x); Q(v)
CROSSREFS
Records at indices in (essentially) A000325.
Sequence in context: A308567 A192099 A193101 * A088696 A257249 A267108
KEYWORD
easy,nonn
AUTHOR
David Wasserman, Jan 14 2005
STATUS
approved