Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Oct 01 2013 17:58:05
%S 6,10,14,15,21,26,30,33,34,35,38,39,42,46,51,55,57,62,65,69,70,74,77,
%T 78,82,85,86,87,91,93,95,102,105,106,111,114,118,119,122,123,129,130,
%U 133,134,138,141,142,143,145,146,155,158,159,161,165,170,177,178,182,183
%N Composite numbers whose prime factors have different digital roots.
%e 399=3*7*19. digital roots = 3,7,1 all different.
%o (PARI) nsamedr2(n) = { local(j); for(j=2,n, if(!isprime(j)&issamedr2(j),print1(j",")) ) } issamedr2(n) = { local(f,a,ln,x,y,dr); f=0; a=ifactor(n); ln=length(a); for(x=1,ln-1, for(y=x+1,ln, if(droot(a[x])==droot(a[y]),return(0)); if(droot(a[x])<>droot(a[y]), f=1,f=0))); if(f==1&ln>1,return(1),return(0)) } droot(n) = \ the digital root of a number. { local(x); x= n%9; if(x>0,return(x),return(9)) } ifactor(n) = \The vector of integer factors of n with multiplicity { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) }
%K base,easy,nonn
%O 1,1
%A _Cino Hilliard_, Jan 02 2005