OFFSET
0,6
COMMENTS
Let p(n, x) = Sum_{k=0..n} T(n, k)*x^k, then the polynomials (-1)^n*p(n; x)/x are called 'Stirling polynomials' by Knuth et al. (CMath, eq. 6.45). - Peter Luschny, Feb 05 2021
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.
LINKS
F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
N. E. Nörlund, Vorlesungen ueber Differenzenrechnung Springer 1924, (p. 146).
FORMULA
E.g.f.: (y/(exp(y)-1))^x. - Vladeta Jovovic, Feb 27 2006
Let p(n, x) = (Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n))/(Product_{j=1..n} (j-x)), where E2 are the second-order Eulerian numbers (A201637), then T(n, k) = [x^k] M(n+1)*p(n, x), where M(n) are the Minkowski numbers (A053657). - Peter Luschny, Feb 05 2021
EXAMPLE
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1
-(1/2)* x
(1/12)*(3*x - 1)*x
-(1/8)*(x-1)*x^2
(1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
-(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
(1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0, -1],
[2] [0, -1, 3],
[3] [0, 0, 1, -1],
[4] [0, 2, 5, -30, 15],
[5] [0, 0, -2, -5, 10, -3],
[6] [0, -16, -42, 91, 315, -315, 63],
[7] [0, 0, 16, 42, -7, -105, 63, -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p), x)):
E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k, 2*n), k = 0..n)/m(n))):
poly := n -> Epoly(n)*denom(Epoly(n)):
seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
MATHEMATICA
row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
PROG
(Sage) # Formula (83), page 146 in Nörlund.
@cached_function
def NoerlundB(n, x):
if n == 0: return 1
return expand((-x/n)*add((-1)^k*binomial(n, k)*bernoulli(k)*NoerlundB(n-k, x) for k in (1..n)))
def A100655_row(n): return numerator(NoerlundB(n, x)).list()
[A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Dec 05 2004
STATUS
approved