login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100655
Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).
3
1, 0, -1, 0, -1, 3, 0, 0, 1, -1, 0, 2, 5, -30, 15, 0, 0, -2, -5, 10, -3, 0, -16, -42, 91, 315, -315, 63, 0, 0, 16, 42, -7, -105, 63, -9, 0, 144, 404, -540, -2345, -840, 3150, -1260, 135, 0, 0, -144, -404, -100, 665, 448, -630, 180, -15, 0, -768, -2288, 2068, 11792, 8195, -8085, -8778, 6930, -1485, 99
OFFSET
0,6
COMMENTS
Let p(n, x) = Sum_{k=0..n} T(n, k)*x^k, then the polynomials (-1)^n*p(n; x)/x are called 'Stirling polynomials' by Knuth et al. (CMath, eq. 6.45). - Peter Luschny, Feb 05 2021
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.
LINKS
F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
N. E. Nörlund, Vorlesungen ueber Differenzenrechnung Springer 1924, (p. 146).
FORMULA
E.g.f.: (y/(exp(y)-1))^x. - Vladeta Jovovic, Feb 27 2006
Let p(n, x) = (Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n))/(Product_{j=1..n} (j-x)), where E2 are the second-order Eulerian numbers (A201637), then T(n, k) = [x^k] M(n+1)*p(n, x), where M(n) are the Minkowski numbers (A053657). - Peter Luschny, Feb 05 2021
EXAMPLE
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1
-(1/2)* x
(1/12)*(3*x - 1)*x
-(1/8)*(x-1)*x^2
(1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
-(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
(1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0, -1],
[2] [0, -1, 3],
[3] [0, 0, 1, -1],
[4] [0, 2, 5, -30, 15],
[5] [0, 0, -2, -5, 10, -3],
[6] [0, -16, -42, 91, 315, -315, 63],
[7] [0, 0, 16, 42, -7, -105, 63, -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p), x)):
E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k, 2*n), k = 0..n)/m(n))):
poly := n -> Epoly(n)*denom(Epoly(n)):
seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
MATHEMATICA
row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
PROG
(Sage) # Formula (83), page 146 in Nörlund.
@cached_function
def NoerlundB(n, x):
if n == 0: return 1
return expand((-x/n)*add((-1)^k*binomial(n, k)*bernoulli(k)*NoerlundB(n-k, x) for k in (1..n)))
def A100655_row(n): return numerator(NoerlundB(n, x)).list()
[A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Dec 05 2004
STATUS
approved