login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100615
Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).
8
1, -1, 5, -1, 1, 1, -5, -1, 7, 3, -15, -5, 7601, 691, -91, -35, 3617, 3617, -745739, -43867, 3317609, 1222277, -5981591, -854513, 5436374093, 1181820455, -213827575, -76977927, 213745149261, 23749461029, -249859397004145, -8615841276005, 238988952277727, 84802531453387
OFFSET
0,3
COMMENTS
With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - Peter Luschny, Jan 23 2023
REFERENCES
F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
LINKS
Madeline Beals-Reid, A Quadratic Relation in the Bernoulli Numbers, The Pump Journal of Undergraduate Research, 6 (2023), 29-39.
FORMULA
E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - Vladimir Kruchinin, Jun 02 2015
a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020
a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - Peter Luschny, May 18 2023
EXAMPLE
1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
MAPLE
S:= series((x/(exp(x)-1))^2, x, 41):
seq(numer(coeff(S, x, j)*j!), j=0..40); # Robert Israel, Jun 02 2015
# Second program:
a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
seq(a(n), n = 0..33); # Peter Luschny, May 18 2023
MATHEMATICA
Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0, 33}] (* Peter Luschny, May 18 2023 *)
PROG
(Maxima) a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n, j)*stirling2(n-j, k)*bern(j), j, 0, n-k), k, 0, n); /* Vladimir Kruchinin, Jun 02 2015 */
(PARI) a(n) = numerator(sum(j=0, n, binomial(n, j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Dec 03 2004
STATUS
approved