OFFSET
0,3
COMMENTS
With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - Peter Luschny, Jan 23 2023
REFERENCES
F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
LINKS
Robert Israel, Table of n, a(n) for n = 0..575
Madeline Beals-Reid, A Quadratic Relation in the Bernoulli Numbers, The Pump Journal of Undergraduate Research, 6 (2023), 29-39.
FORMULA
E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - Vladimir Kruchinin, Jun 02 2015
a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020
a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - Peter Luschny, May 18 2023
EXAMPLE
MAPLE
S:= series((x/(exp(x)-1))^2, x, 41):
seq(numer(coeff(S, x, j)*j!), j=0..40); # Robert Israel, Jun 02 2015
# Second program:
a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
seq(a(n), n = 0..33); # Peter Luschny, May 18 2023
MATHEMATICA
Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0, 33}] (* Peter Luschny, May 18 2023 *)
PROG
(Maxima) a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n, j)*stirling2(n-j, k)*bern(j), j, 0, n-k), k, 0, n); /* Vladimir Kruchinin, Jun 02 2015 */
(PARI) a(n) = numerator(sum(j=0, n, binomial(n, j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Dec 03 2004
STATUS
approved