login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100612
a(n) = (0! + 1! + ... + (p-1)!) mod p, where p = prime(n).
5
0, 1, 4, 6, 1, 10, 13, 9, 21, 17, 2, 5, 4, 16, 18, 13, 28, 22, 65, 68, 55, 20, 27, 76, 80, 13, 50, 43, 65, 109, 56, 81, 93, 134, 82, 10, 131, 4, 30, 104, 29, 170, 104, 165, 9, 122, 130, 42, 225, 50, 69, 12, 128, 60, 147, 52, 16, 56, 7, 218, 154, 264, 198, 48, 299, 205, 251, 101
OFFSET
1,3
COMMENTS
The greedy inverse (indices of first occurrence of 1, 2, 3, ... in the sequence) is 2, 11, 91, 3, 12, 4, 59, -1, 8, 6, -1, 52, 7, 2550, -1, 14, 10, 15, 5461, 22, 9, 18, 205, 141, 4178, -1, 23, 17, 41, 39, -1, 5297, 937, -1, -1, -1, -1, 5248, 213, -1, 90, 48, 28, 4202, -1, 1718, 313, 64, 119, 27, ... where -1 means the number does not exist or is larger than 8000. - R. J. Mathar, Dec 19 2016
a(12397) = 31; a(54708) = 37. - Michel Marcus, May 11 2019
a(105527) = 35. - Michel Marcus, May 13 2019
a(16728884) = 26; a(62860131) = 35; sent by Milos Tatarevic. - Michel Marcus, May 18 2019
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B44: is a(n)>0 for n>2?
LINKS
Vladica Andrejic and Milos Tatarevic, Searching for a counterexample to Kurepa's Conjecture, arXiv:1409.0800 [math.NT], 2014-2015.
Vladica Andrejic, Alin Bostan, Milos Tatarevic, Improved algorithms for left factorial residues, arXiv:1904.09196 [math.NT], 2019.
Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013-2014.
T. D. Noe, Plot of first 5000 terms (The red line gives prime(n). There are very few duplicate values in the sequence; the 5000 terms have 4476 values.)
FORMULA
a(n) = A236399(n) mod prime(n).
a(n) = A067462(prime(n)) + 1, unless A067462(prime(n)) == - 1 (mod n). - Michel Marcus, May 05 2019
MAPLE
lf:=n->add(k!, k=0..n-1);
[seq(lf(ithprime(n)) mod ithprime(n), n=1..100)];
# 2nd program:
A100612 := proc(n)
local p, f, a, k;
f := 1 ;
a := 0 ;
p := ithprime(n) ;
for k from 0 to p-1 do
a := modp(a+f, p) ;
f := modp(f*(k+1), p) ;
end do:
a ;
end proc:
seq(A100612(n), n=1..50) ; # R. J. Mathar, Dec 19 2016
MATHEMATICA
Table[Mod[Total[Range[0, n-1]!], n], {n, Prime[Range[70]]}] (* Harvey P. Dale, May 06 2013 *)
PROG
(PARI) a(n) = {my(p = prime(n), v = vector(p-1, k, Mod(k, p))); for (k=2, p-1, v[k] *= v[k-1]; ); lift(1+vecsum(v)); } \\ Michel Marcus, May 05 2019
CROSSREFS
See A049782 for more information. See also A003422, A236399.
Cf. A067462.
Sequence in context: A290823 A370706 A090642 * A322778 A079160 A230256
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2004
STATUS
approved