

A100609


Decimal expansion of the constant whose continued fraction representation is [e^0; e^1, e^2, e^3, e^4, ...] where e is A001113 and the exponents cycle through all nonnegative integers.


4



1, 3, 5, 0, 5, 4, 3, 6, 0, 4, 3, 2, 2, 1, 1, 2, 4, 1, 8, 0, 4, 7, 0, 9, 8, 3, 2, 4, 6, 5, 9, 7, 4, 8, 3, 6, 8, 6, 6, 1, 4, 6, 7, 3, 3, 2, 0, 5, 8, 3, 6, 4, 0, 4, 6, 6, 5, 6, 0, 2, 9, 1, 6, 6, 2, 8, 0, 9, 4, 7, 1, 9, 0, 4, 4, 1, 2, 4, 5, 8, 4, 5, 3, 8, 1, 5, 9, 0, 7, 8, 9, 4, 6, 5, 2, 5, 1, 9, 2, 4, 2, 6, 6, 0, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..2000


EXAMPLE

1.35054360432211241804709832465974836866146733205836404665602916628...


MATHEMATICA

N[FromContinuedFraction[Table[E^k, {k, 0, 25}]], 111]


PROG

(PARI) f(n)= { x=0; for (i=1, n, x=1/(exp(1+ni) + x)); 1+x } { default(realprecision, 2080); y=1.0; n=70; x=f(n); while(x!=y, y=x; n=n+1; x=f(n); ); for (m=1, 2000, d=floor(x); x=(xd)*10; write("b100609.txt", m, " ", d)); } \\ Harry J. Smith, May 03 2009


CROSSREFS

Cf. A001113.
Cf. A055972 Continued fraction.  Harry J. Smith, May 03 2009
Sequence in context: A307209 A243967 A144541 * A104866 A165723 A257407
Adjacent sequences: A100606 A100607 A100608 * A100610 A100611 A100612


KEYWORD

cons,nonn


AUTHOR

Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 01 2004


EXTENSIONS

Fixed my PARI program, had n numbers Harry J. Smith, May 19 2009


STATUS

approved



