login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334987
Sum of centered triangular numbers dividing n.
1
1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 20, 15, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 32, 5, 1, 1, 1, 5, 1, 20, 1, 15, 1, 1, 1, 5, 1, 47, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 20, 1, 1, 15, 1, 32, 1, 69, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 24, 1, 1, 1, 15, 1, 1, 1, 5, 86, 1, 1, 5, 1, 11
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Centered Triangular Number
FORMULA
G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
PROG
(PARI) isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k));
a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 18 2020
STATUS
approved