OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Centered Triangular Number
FORMULA
G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
PROG
(PARI) isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k));
a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 18 2020
STATUS
approved