|
|
A334986
|
|
a(n) = exp(n) * Sum_{k>=0} (-1)^k * n^(k-1) * k^(n-1) / k!.
|
|
2
|
|
|
1, -1, 2, -5, 9, 53, -1107, 12983, -116470, 560049, 8370713, -346902877, 7551856337, -117404648467, 913399734614, 22560135521007, -1393700803877939, 44331044030953865, -979905458659247779, 10462396536804802459, 367799071887303276422, -30046998012662824941947
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..n-1} (-1)^k * Stirling2(n-1,k) * n^(k-1).
a(n) = BellPolynomial_(n-1)(-n) / n.
|
|
MATHEMATICA
|
Table[Sum[(-1)^k StirlingS2[n - 1, k] n^(k - 1), {k, 0, n - 1}], {n, 1, 22}]
Table[BellB[n - 1, -n]/n, {n, 1, 22}]
|
|
PROG
|
(PARI) a(n)={sum(k=0, n-1, (-1)^k * stirling(n-1, k, 2) * n^(k-1))} \\ Andrew Howroyd, May 18 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|