login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249583
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 2 (mod 3).
4
1, 1, 1, 2, 5, 9, 40, 169, 477, 3194, 19241, 74601, 666160, 5216485, 25740261, 287316122, 2769073949, 16591655817, 222237912664, 2543467934449, 17929265150637, 280180369563194, 3712914075133121, 30098784753112329, 537546603651987424, 8094884285992309261
OFFSET
0,4
COMMENTS
This is the (UDU)* version of 3-alternating permutations of [n], (U=Up, D=Down).
LINKS
J. M. Luck, On the frequencies of patterns of rises and falls, arXiv:1309.7764, 2013
Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page
R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, 2009
EXAMPLE
a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 9: 13245, 14235, 15234, 23145, 24135, 25134, 34125, 35124, 45123.
a(6) = 40: 132465, 132564, 142365, 142563, 143562, 152364, 152463, 153462, 162354, 162453, 163452, 231465, 231564, 241365, 241563, 243561, 251364, 251463, 253461, 261354, 261453, 263451, 341265, 341562, 342561, 351264, 351462, 352461, 361254, 361452, 362451, 451263, 451362, 452361, 461253, 461352, 462351, 561243, 561342, 562341.
a(7) = 169: 1324657, 1324756, 1325647, ..., 6723514, 6724513, 6734512.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=2, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 2, Sum[b[u - j, o + j - 1, Mod[t+1, 3]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t+1, 3]], {j, 1, o}]]];
a[n_] := b[0, n, 0];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A178963 (i=0), A249402 (i=1).
Sequence in context: A161137 A229551 A247550 * A109469 A334986 A185160
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 01 2014
STATUS
approved