OFFSET
1,1
COMMENTS
The sequence, in reverse order, comprises numbers to the left of a(0) in A249579, where the terms would be labeled a(-1), a(-2), a(-3), ... .
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Russell Walsmith, A sequence of matrices
Russell Walsmith, DCL-Chemy III: Hyper-Quadratics
Index entries for linear recurrences with constant coefficients, signature (0,0,0,-3,0,0,0,1).
FORMULA
a(n) = -3*a(n-4)+a(n-8). - Colin Barker, Nov 06 2014
G.f.: -x*(x^6+x^5+x^3-2*x^2-x+3) / (x^8-3*x^4-1). - Colin Barker, Nov 06 2014
EXAMPLE
M^-1 = [[1,-6,9][-1,5,-6][1,-4,4]]. sqrt(M[1,3]) = 3, sqrt(M[1,1]) = -1, sqrt(M[3,3]) = -2, sqrt(M[3,1]) = 1. Then r = 3; s = -1; t = -2; ; u = 1.
M^-2 = [[16,-72,81][-12,55,-63][9,-42,49]]. sqrt(M[1,3]) = -9, sqrt(M[1,1]) = 4, sqrt(M[3,3]) = 7, sqrt(M[3,1]) = -3. Then r = -9; s = 4; t = 7; ; u = -3.
MATHEMATICA
m[e_] := MatrixPower[{{4, 12, 9}, {2, 5, 3}, {1, 2, 1}}, -e]; g[e_, x_, y_] := (-1)^If[x == y, e, e + 1] Sqrt@ m[e][[x, y]]; f[e_] := {g[e, 1, 3], g[e, 1, 1], g[e, 3, 3], g[e, 3, 1]}; Array[f, 10] // Flatten (* Robert G. Wilson v, Dec 19 2014 *)
PROG
(PARI) Vec(-x*(x^6+x^5+x^3-2*x^2-x+3)/(x^8-3*x^4-1) + O(x^100)) \\ Colin Barker, Nov 06 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Russell Walsmith, Nov 02 2014
STATUS
approved