This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052924 Expansion of g.f.: (1-x)/(1 - 3*x - x^2). 10
 1, 2, 7, 23, 76, 251, 829, 2738, 9043, 29867, 98644, 325799, 1076041, 3553922, 11737807, 38767343, 128039836, 422886851, 1396700389, 4612988018, 15235664443, 50319981347, 166195608484, 548906806799, 1812916028881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Euler encountered this sequence when finding the largest root of z^2 - 3z - 1 = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Aug 20 2003 Let M = a triangle with the Pell series A000129 (1, 2, 5, 12, ...) in each column, with the leftmost column shifted upwards one row. A052924 starting (1, 2, 7, 23, ...) = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 31 2010 a(n) is the number of compositions of n when there are 2 types of 1 and 3 types of other natural numbers. - Milan Janjic, Aug 13 2010 Equals partial sums of A108300 prefaced with a 1: (1, 1, 5, 16, 53, 175, 578, ...). - Gary W. Adamson, Feb 15 2012 REFERENCES L. Euler, Introductio in analysin infinitorum, 1748, section 338. English translation by John D. Blanton, Introduction to Analysis of the Infinite, 1988, Springer, p. 286. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157. Sergio Falcon and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24. Tanya Khovanova, Recursive Sequences INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 909 Index entries for linear recurrences with constant coefficients, signature (3,1). FORMULA a(n) = 3*a(n-1) + a(n-2). a(n) = Sum_{alpha=RootOf(-1+3*x+x^2)} (1/13)*(1+5*alpha)*alpha^(-1-n). With offset 1: a(1)=1; for n > 1, a(n) = Sum_{i=1..3n-4} a(ceiling(i/3))). - Benoit Cloitre, Jan 04 2004 Binomial transform of A006130. a(n) = (1/2 - sqrt(13)/26)*(3/2 - sqrt(13)/2)^n + (1/2 + sqrt(13)/26)*(3/2 + sqrt(13)/2)^n. - Paul Barry, Jul 20 2004 From Creighton Dement, Nov 04 2004: (Start) a(n) = A006190(n+1) - A006190(n); 4*a(n) = 9*A006190(n+1) - A006497(n+1) - 2*A003688(n+1). (End) Numerators in continued fraction [1, 2, 3, 3, 3, ...], where the latter = 0.69722436226...; the length of an inradius of a right triangle with legs 2 and 3. - Gary W. Adamson, Dec 19 2007 If p=2, p[i]=3, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, Apr 29 2010 a(n) = A006190(n) + A003688(n). - R. J. Mathar, Jul 06 2012 MAPLE spec:= [S, {S=Sequence(Prod(Sequence(Z), Union(Z, Z, Prod(Z, Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30); seq(coeff(series((1-x)/(1-3*x-x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019 MATHEMATICA CoefficientList[Series[(1-x)/(1-3*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Jun 09 2019 *) PROG (PARI) Vec((1-x)/(1-3*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2) )); // G. C. Greubel, Jun 09 2019 (Sage) ((1-x)/(1-3*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019 (GAP) a:=[1, 2];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Jun 09 2019 CROSSREFS Cf. A108300. Sequence in context: A273345 A042575 A256030 * A067324 A292231 A292232 Adjacent sequences:  A052921 A052922 A052923 * A052925 A052926 A052927 KEYWORD easy,nonn,changed AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 03:24 EDT 2019. Contains 328291 sequences. (Running on oeis4.)