login
A108300
a(n+2) = 3*a(n+1) + a(n), with a(0) = 1, a(1) = 5.
7
1, 5, 16, 53, 175, 578, 1909, 6305, 20824, 68777, 227155, 750242, 2477881, 8183885, 27029536, 89272493, 294847015, 973813538, 3216287629, 10622676425, 35084316904, 115875627137, 382711198315, 1264009222082, 4174738864561, 13788225815765, 45539416311856
OFFSET
0,2
COMMENTS
Binomial transform is A109114.
Invert transform is A109115.
Inverse invert transform is A016777.
Inverse binomial transform is A006130.
LINKS
Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
Tanya Khovanova, Recursive Sequences
Vincent Vatter, Growth rates of permutation classes: from countable to uncountable, arXiv:1605.04297 [math.CO], 2016. (Mentions a signed version.)
FORMULA
G.f.: (1 + 2*x)/(1 - 3*x - x^2).
a(n) = A052924(n+1) - A052924(n).
a(n)*a(n-2) = a(n-1)^2 + 9*(-1)^n. - Roger L. Bagula, May 17 2010
a(n) = 3^n*Sum_{k=0..n} A374439(n, k)*(1/3)^k. - Peter Luschny, Jul 26 2024
MAPLE
seriestolist(series((-2*x-1)/(x^2-1+3*x), x=0, 25));
MATHEMATICA
LinearRecurrence[{3, 1}, {1, 5}, 40] (* Harvey P. Dale, Jul 04 2013 *)
PROG
(PARI) Vec((1 + 2*x)/(1 - 3*x - x^2) + O(x^30)) \\ Andrew Howroyd, Jun 05 2021
CROSSREFS
Row sums and main diagonal of A143972. - Gary W. Adamson, Sep 06 2008
Sequence in context: A147536 A347434 A173871 * A041469 A089102 A098912
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Jul 24 2005
STATUS
approved