login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108300
a(n+2) = 3*a(n+1) + a(n), with a(0) = 1, a(1) = 5.
7
1, 5, 16, 53, 175, 578, 1909, 6305, 20824, 68777, 227155, 750242, 2477881, 8183885, 27029536, 89272493, 294847015, 973813538, 3216287629, 10622676425, 35084316904, 115875627137, 382711198315, 1264009222082, 4174738864561, 13788225815765, 45539416311856
OFFSET
0,2
COMMENTS
Binomial transform is A109114.
Invert transform is A109115.
Inverse invert transform is A016777.
Inverse binomial transform is A006130.
LINKS
Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
Tanya Khovanova, Recursive Sequences
Vincent Vatter, Growth rates of permutation classes: from countable to uncountable, arXiv:1605.04297 [math.CO], 2016. (Mentions a signed version.)
FORMULA
G.f.: (1 + 2*x)/(1 - 3*x - x^2).
a(n) = A052924(n+1) - A052924(n).
a(n)*a(n-2) = a(n-1)^2 + 9*(-1)^n. - Roger L. Bagula, May 17 2010
a(n) = 3^n*Sum_{k=0..n} A374439(n, k)*(1/3)^k. - Peter Luschny, Jul 26 2024
MAPLE
seriestolist(series((-2*x-1)/(x^2-1+3*x), x=0, 25));
MATHEMATICA
LinearRecurrence[{3, 1}, {1, 5}, 40] (* Harvey P. Dale, Jul 04 2013 *)
PROG
(PARI) Vec((1 + 2*x)/(1 - 3*x - x^2) + O(x^30)) \\ Andrew Howroyd, Jun 05 2021
CROSSREFS
Row sums and main diagonal of A143972. - Gary W. Adamson, Sep 06 2008
Sequence in context: A147536 A347434 A173871 * A041469 A089102 A098912
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Jul 24 2005
STATUS
approved