

A098912


Number of ways angles from Pi/n to (n1)Pi/n can tile around a vertex, where rotations and reflections of an angle sequence are not counted.


2



1, 5, 16, 54, 180, 607, 2098, 7397, 26452, 95821, 350554, 1292634, 4797694, 17904220, 67125898, 252679320, 954505718, 3616951513, 13744169104, 52358244166, 199912298266, 764879838343, 2932035371786, 11259007784430, 43303859981236, 166800020984581
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Sequence can be interpreted as a tiling of rhombs (with appropriate angles) around a vertex. E.g.. a(5) is the number of ways Penrose rhombs can tile around a vertex.
Also, the number of nonequivalent compositions of 2*n with maximum part size n1 up to rotation and reflection.  Andrew Howroyd, Sep 06 2017


LINKS

Andrew Howroyd, Table of n, a(n) for n = 2..200


FORMULA

From Andrew Howroyd, Sep 06 2017: (Start)
a(n) = A091696(2*n)  1  Sum_{1..n} A005418(n).
a(n) = 2^(n2)  2^(floor(n/2))  2^(floor((n1)/2)) + (1/(4*n)) * (Sum_{d  2*n} phi(2*n/d) * 2^d).
(End)


EXAMPLE

a(3) = 5 because we can write 2pi = 2'+2'+2' or 2'+1'+2'+1' or 2'+2'+1'+1' or 2'+1'+1'+1'+1' or 1'+1'+1'+1'+1'+1' where k' = k pi/3.


MATHEMATICA

b[n_] := (1/n)*DivisorSum[n, EulerPhi[n/#] * 2^# &];
a[n_] := b[2*n]/2 + 2^(n2)  2^Quotient[n, 2]  2^Quotient[n1, 2];
Table[a[n], {n, 2, 27}] (* JeanFrançois Alcover, Oct 08 2017, translated from PARI *)


PROG

(PARI)
b(n) = (1/n)*sumdiv(n, d, eulerphi(n/d) * 2^d);
a(n) = b(2*n)/2 + 2^(n2)  2^(n\2)  2^((n1)\2); \\ Andrew Howroyd, Sep 06 2017


CROSSREFS

Cf. A005418, A091696, A098913.
Sequence in context: A108300 A041469 A089102 * A299685 A268225 A120343
Adjacent sequences: A098909 A098910 A098911 * A098913 A098914 A098915


KEYWORD

nonn


AUTHOR

Stuart E Anderson, Oct 17 2004


EXTENSIONS

Terms a(8) and beyond from Andrew Howroyd, Sep 06 2017


STATUS

approved



