|
|
A098913
|
|
Number of different ways angles from Pi/n to (n-1)Pi/n can tile around a vertex, where rotations of an angle sequence are not counted, but reflections that are different are counted.
|
|
2
|
|
|
1, 5, 19, 75, 287, 1053, 3859, 14089, 51463, 188697, 695155, 2573235, 9571195, 35759799, 134154259, 505163055, 1908619755, 7233118641, 27486768415, 104713346699, 399818311219, 1529747101965, 5864045590035, 22517965253595, 86607619323751, 333599840675337
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
The sequence represents the number of ways rhombi (with appropriate angles) can tile around a vertex, e.g. a(5) is the number of ways Penrose rhombs can tile a vertex where tilings that are different by rotation are counted and tilings that are the same by reflection are also counted.
Also, the number of nonequivalent compositions of 2*n with maximum part size n-1 up to rotation. - Andrew Howroyd, Sep 06 2017
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 2..200
|
|
FORMULA
|
From Andrew Howroyd, Sep 06 2017: (Start)
a(n) = A008965(2*n) - 2^n.
a(n) = (Sum_{d | 2*n} phi(2*n/d) * 2^d)/(2*n) - 1 - 2^n.
(End)
|
|
EXAMPLE
|
a(4)=19 because 2pi = 3'3'2' or 2'2'2'2' or 3'1'2'2' or 3'1'3'1' or 3'2'1'2' or 3'2'2'1' or 3'3'1'1' or 2'2'1'2'1' or 2'2'2'1'1' or 3'1'1'1'2' or 3'1'1'2'1' or 3'1'2'1'1' or 3'2'1'1'1' or 2'1'1'2'1'1' or 2'1'2'1'1'1' or 2'2'1'1'1'1' or 3'1'1'1'1'1' or 2'1'1'1'1'1'1' or 1'1'1'1'1'1'1'1' where k' = k pi/4. Note 3'2'2'1 and 3'1'2'2'; 3'1'1'2'1' and 3'1'2'1'1'; 3'1'1'1'2' and 3'2'1'1'1' are different by rotation but not reflection
|
|
PROG
|
(PARI)
b(n) = (1/n)*sumdiv(n, d, eulerphi(n/d) * 2^d);
a(n) = b(2*n) - 1 - 2^n; \\ Andrew Howroyd, Sep 06 2017
|
|
CROSSREFS
|
Cf. A008965, A091696, A098912.
Sequence in context: A254686 A295374 A212403 * A126392 A206373 A149767
Adjacent sequences: A098910 A098911 A098912 * A098914 A098915 A098916
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Stuart E Anderson, Oct 17 2004
|
|
EXTENSIONS
|
Terms a(8) and beyond from Andrew Howroyd, Sep 06 2017
|
|
STATUS
|
approved
|
|
|
|