OFFSET
3,2
COMMENTS
The number of all possible ways to permute n distinct aligned balls, one is blue, 2 are red and the remaining are green, such that no red ball occurs by the side of the blue ball. It may generalized to r red balls: a(n,r) = (n-r-1)(n-r)(n-2)!. - Alessandro Nicolosi (xxalenicxx(AT)hotmail.com), Jul 12 2006
A formula for the permanents of these n X n matrices(A) can be easily derived by minor expansion along the first row: a(n)=per(A)=(n-2)*per(B), where B is the n-1 X n-1 (0,1)-matrix with bij=0 iff (i=n,j=1) and (i=n,j=n). A new minor expansion along the last row of B yields: per(B)=(n-3)*per(C)=(n-3)*(n-2)! since C is the n-2 X n-2 1-matrix. Hence: a(n)=(n-2)*(n-3)*(n-2)!. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
Number of permutations of n-1 having exactly 4 points P on the boundary of their bounding square. (A bounding square for a permutation of n is the square with sides parallel to the coordinate axis containing (1,1) and (n,n), and the set of points P of a permutation p is the set {(k,p(k)) for 0<k<n+1}). - David Nacin, Feb 27 2012
a(n) is also the number of permutations of n symbols that 4-commute with a transposition (see A233440 for definition): a permutation p of {1,...,n} has exactly four points on the boundary of their bounding square if and only if p 4-commutes with transposition (1, n). - Luis Manuel Rivera Martínez, Feb 27 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..200
Emeric Deutsch, Permutations and their bounding squares, Math Magazine, 85(1) (2012), p. 63.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = (n-2)*(n-3)*(n-2)!. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=4} 1/a(n) = 3 - e, where e = A001113.
EXAMPLE
a(3) = 0 because no configuration is allowed, the 2 red balls always occurs by the side of the blue ball. a(4) = 4 because we can have 4 possible permutations: b,g1,r1,r2 b,g1,r2,r1 r1,r2,g1,b r2,r1,g1,b.
MAPLE
a:= n->(n-2)*(n-3)*(n-2)!: seq(a(n), n=3..20); # Zerinvary Lajos, Jul 01 2007
MATHEMATICA
a[n_, r_] := (n-r-1)(n-r)(n-2)! (* Alessandro Nicolosi (xxalenicxx(AT)hotmail.com), Jul 12 2006 *)
Table[(n-2)*(n-3)*(n-2)!, {n, 3, 30}] (* Vincenzo Librandi, Feb 27 2012 *)
PROG
(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p)
for(n=3, 24, a=matrix(n, n, i, j, 1); a[1, 1]=0; a[1, n]=0; a[n, 1]=0; a[n, n]=0; print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
(PARI) for(n=3, 24, print1((n-2)*(n-3)*(n-2)!", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
(Python)
import math
def a(n):
return (n-2)*(n-3)*math.factorial(n-2) # David Nacin, Feb 27 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Simone Severini, Oct 17 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
STATUS
approved