login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098916
Permanent of the n X n (0,1)-matrices with ij-th entry equal to zero iff (i=1,j=1),(i=1,j=n),(i=n,j=1) and (i=n,j=n).
5
0, 4, 36, 288, 2400, 21600, 211680, 2257920, 26127360, 326592000, 4390848000, 63228211200, 971415244800, 15866448998400, 274611617280000, 5021469573120000, 96746980442112000, 1959126353952768000
OFFSET
3,2
COMMENTS
The number of all possible ways to permute n distinct aligned balls, one is blue, 2 are red and the remaining are green, such that no red ball occurs by the side of the blue ball. It may generalized to r red balls: a(n,r) = (n-r-1)(n-r)(n-2)!. - Alessandro Nicolosi (xxalenicxx(AT)hotmail.com), Jul 12 2006
A formula for the permanents of these n X n matrices(A) can be easily derived by minor expansion along the first row: a(n)=per(A)=(n-2)*per(B), where B is the n-1 X n-1 (0,1)-matrix with bij=0 iff (i=n,j=1) and (i=n,j=n). A new minor expansion along the last row of B yields: per(B)=(n-3)*per(C)=(n-3)*(n-2)! since C is the n-2 X n-2 1-matrix. Hence: a(n)=(n-2)*(n-3)*(n-2)!. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
Number of permutations of n-1 having exactly 4 points P on the boundary of their bounding square. (A bounding square for a permutation of n is the square with sides parallel to the coordinate axis containing (1,1) and (n,n), and the set of points P of a permutation p is the set {(k,p(k)) for 0<k<n+1}). - David Nacin, Feb 27 2012
a(n) is also the number of permutations of n symbols that 4-commute with a transposition (see A233440 for definition): a permutation p of {1,...,n} has exactly four points on the boundary of their bounding square if and only if p 4-commutes with transposition (1, n). - Luis Manuel Rivera Martínez, Feb 27 2014
LINKS
Emeric Deutsch, Permutations and their bounding squares, Math Magazine, 85(1) (2012), p. 63.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
a(n) = (n-2)*(n-3)*(n-2)!. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=4} 1/a(n) = 3 - e, where e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 2*(gamma - Ei(-1)) - 1/e - 1, where gamma = A001620 and Ei(-1) = -A099285. (End)
EXAMPLE
a(3) = 0 because no configuration is allowed, the 2 red balls always occurs by the side of the blue ball. a(4) = 4 because we can have 4 possible permutations: b,g1,r1,r2 b,g1,r2,r1 r1,r2,g1,b r2,r1,g1,b.
MAPLE
a:= n->(n-2)*(n-3)*(n-2)!: seq(a(n), n=3..20); # Zerinvary Lajos, Jul 01 2007
MATHEMATICA
a[n_, r_] := (n-r-1)(n-r)(n-2)! (* Alessandro Nicolosi (xxalenicxx(AT)hotmail.com), Jul 12 2006 *)
Table[(n-2)*(n-3)*(n-2)!, {n, 3, 30}] (* Vincenzo Librandi, Feb 27 2012 *)
PROG
(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p)
for(n=3, 24, a=matrix(n, n, i, j, 1); a[1, 1]=0; a[1, n]=0; a[n, 1]=0; a[n, n]=0; print1(permRWNb(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
(PARI) for(n=3, 24, print1((n-2)*(n-3)*(n-2)!", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
(Python)
import math
def a(n):
return (n-2)*(n-3)*math.factorial(n-2) # David Nacin, Feb 27 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Simone Severini, Oct 17 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
STATUS
approved