login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354404
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
3
1, 4, 36, 288, 7200, 10800, 264600, 33868800, 914457600, 4572288000, 553246848000, 2212987392000, 373994869248000, 327245510592000, 19634730635520000, 5026491042693120000, 1452655911338311680000, 39221709606134415360000, 14159037167814523944960000, 141590371678145239449600000
OFFSET
1,2
FORMULA
Denominators of coefficients in expansion of (gamma + log(x) - Ei(-x)) / (1 - x), x > 0.
EXAMPLE
1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
MATHEMATICA
Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest
PROG
(PARI) a(n) = denominator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
(Python)
from math import factorial
from fractions import Fraction
def A354404(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1, n+1)).denominator # Chai Wah Wu, May 27 2022
CROSSREFS
Cf. A001563, A053556, A061355, A239069, A354401, A354402 (numerators).
Sequence in context: A172134 A098916 A354401 * A316297 A180170 A277174
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 25 2022
STATUS
approved