login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180170
a(0) = 1, a(n) = n*a(n-1)*A014963(n).
0
1, 1, 4, 36, 288, 7200, 43200, 2116800, 33868800, 914457600, 9144576000, 1106493696000, 13277924352000, 2243969215488000, 31415569016832000, 471233535252480000, 15079473128079360000, 4357967734014935040000, 78443419212268830720000
OFFSET
0,3
COMMENTS
Lcm of the first n terms of the sequence of the denominators A_n of the preprint.
LINKS
L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325 [math.NT], 2009-2010, eq (1.6).
Jim Pitman and Wenpin Tang, Regenerative random permutations of integers, arXiv:1704.01166, [math.PR], 2017, p. 18.
FORMULA
a(n) = n! * lcm(1,2,...,n) = n! * A003418(n), n > 0. - Benedict W. J. Irwin, Nov 01 2016
MATHEMATICA
(* First run the program for A014963 *) b[0] := 1; b[1] := 1; b[n_] := n * b[n - 1] * a[n]; Table[b[n], {n, 0, 19}] (* Alonso del Arte, Jan 16 2011 *)
Join[{1}, Table[n!LCM@@Range[n], {n, 1, 20}]] (* Benedict W. J. Irwin, Nov 01 2016 *)
F=Table[1, {n, 1, 20}]; For[i=1, i<20, i++, F[[i+1]]=(i+1)*F[[i]]*Exp[MangoldtLambda[i+1]]]; Join[{1}, F] (* Benedict W. J. Irwin, Nov 01 2016 *)
PROG
(PARI)
{
local(r);
if( isprime(n), return(n));
if( ispower(n, , &r) && isprime(r), return(r) );
return(1);
}
a(n)=if(n==0, 1, n * a(n-1) * A014963(n));
for(n=0, 55, print1(a(n), ", "))
/* Joerg Arndt, Jan 16 2011 */
CROSSREFS
Sequence in context: A354401 A354404 A316297 * A277174 A059416 A240889
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 16 2011
STATUS
approved