login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
3

%I #14 May 27 2022 21:14:31

%S 1,4,36,288,7200,10800,264600,33868800,914457600,4572288000,

%T 553246848000,2212987392000,373994869248000,327245510592000,

%U 19634730635520000,5026491042693120000,1452655911338311680000,39221709606134415360000,14159037167814523944960000,141590371678145239449600000

%N a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).

%F Denominators of coefficients in expansion of (gamma + log(x) - Ei(-x)) / (1 - x), x > 0.

%e 1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...

%t Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator

%t nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest

%o (PARI) a(n) = denominator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ _Michel Marcus_, May 26 2022

%o (Python)

%o from math import factorial

%o from fractions import Fraction

%o def A354404(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).denominator # _Chai Wah Wu_, May 27 2022

%Y Cf. A001563, A053556, A061355, A239069, A354401, A354402 (numerators).

%K nonn,frac

%O 1,2

%A _Ilya Gutkovskiy_, May 25 2022