login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098909
Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.
4
1, 12, 3, 150, 60, 12, 2160, 1080, 360, 60, 36015, 20580, 8820, 2520, 360, 688128, 430080, 215040, 80640, 20160, 2520, 14880348, 9920232, 5511240, 2449440, 816480, 181440, 20160, 360000000, 252000000, 151200000, 75600000, 30240000, 9072000
OFFSET
3,2
FORMULA
T(n, k) = (n-1)!*n^(n-k)/(2*(n-k)!).
E.g.f.: -(2*log(1+x*LambertW(-y))-2*x*LambertW(-y)+x^2*LambertW(-y)^2)/4.
EXAMPLE
Triangle begins as:
1;
12, 3;
150, 60, 12;
2160, 1080, 360, 60;
36015, 20580, 8820, 2520, 360;
...
MATHEMATICA
f[list_] := Select[list, #>0&]; t = Sum[n^(n-1)x^n/n!, {n, 1, 20}]; Map[f, Drop[Transpose[Table[Range[0, 8]! CoefficientList[Series[t^n/(2n), {x, 0, 8}], x], {n, 3, 8}]], 3]] (* Geoffrey Critzer, Oct 23 2011 *)
Table[k!*Binomial[n, k]*n^(n-k-1)/2, {n, 3, 12}, {k, 3, n}]//Flatten (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) {T(n, k) = k!*binomial(n, k)*n^(n-k-1)/2 }; \\ G. C. Greubel, May 16 2019
(Magma) [[Factorial(k)*Binomial(n, k)*n^(n-k-1)/2: k in [3..n]]: n in [3..12]]; // G. C. Greubel, May 16 2019
(Sage) [[factorial(k)*binomial(n, k)*n^(n-k-1)/2 for k in (3..n)] for n in (3..12)] # G. C. Greubel, May 16 2019
(GAP) Flat(List([3..12], n-> List([3..n], k-> Factorial(k)*Binomial(n, k) *n^(n-k-1)/2 ))); # G. C. Greubel, May 16 2019
CROSSREFS
Row sums: A057500, columns: A053507, A065889.
Sequence in context: A130895 A367431 A038329 * A261403 A010202 A079792
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Oct 15 2004
STATUS
approved