|
|
A261403
|
|
Coefficients of an example of a modular form of weight 2 for the group Gamma_0(32).
|
|
1
|
|
|
1, 12, 4, 0, 0, -24, -16, 0, -8, -36, 24, 0, 0, 72, -32, 0, 24, 24, 52, 0, 0, 0, -48, 0, -32, -12, 56, 0, 0, -120, -96, 0, 24, 0, 72, 0, 0, -24, -80, 0, -48, 120, 128, 0, 0, 72, -96, 0, 96, -84, 124, 0, 0, 168, -160, 0, -64, 0, 120, 0, 0, -120, -128, 0, 24, -144, 192, 0, 0, 0, -192
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is a particular member of an eight-dimensional vector space.
|
|
LINKS
|
|
|
PROG
|
(Sage)
def a(n):
B = ModularForms(Gamma0(32), 2).basis()
f = B[1] + 12*B[0] + 4*B[3] - 16*B[6] - 8*B[7]
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|