login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.
4

%I #18 Sep 08 2022 08:45:15

%S 1,12,3,150,60,12,2160,1080,360,60,36015,20580,8820,2520,360,688128,

%T 430080,215040,80640,20160,2520,14880348,9920232,5511240,2449440,

%U 816480,181440,20160,360000000,252000000,151200000,75600000,30240000,9072000

%N Triangle T(n,k) of numbers of connected (unicyclic) graphs with unique cycle of length k (3<=k<=n), on n labeled nodes.

%H G. C. Greubel, <a href="/A098909/b098909.txt">Rows n = 3..100 of triangle, flattened</a>

%F T(n, k) = (n-1)!*n^(n-k)/(2*(n-k)!).

%F E.g.f.: -(2*log(1+x*LambertW(-y))-2*x*LambertW(-y)+x^2*LambertW(-y)^2)/4.

%e Triangle begins as:

%e 1;

%e 12, 3;

%e 150, 60, 12;

%e 2160, 1080, 360, 60;

%e 36015, 20580, 8820, 2520, 360;

%e ...

%t f[list_] := Select[list, #>0&]; t = Sum[n^(n-1)x^n/n!, {n, 1, 20}]; Map[f,Drop[Transpose[Table[Range[0,8]! CoefficientList[Series[t^n/(2n), {x, 0, 8}], x], {n, 3, 8}]], 3]] (* _Geoffrey Critzer_, Oct 23 2011 *)

%t Table[k!*Binomial[n,k]*n^(n-k-1)/2, {n,3,12}, {k,3,n}]//Flatten (* _G. C. Greubel_, May 16 2019 *)

%o (PARI) {T(n,k) = k!*binomial(n,k)*n^(n-k-1)/2 }; \\ _G. C. Greubel_, May 16 2019

%o (Magma) [[Factorial(k)*Binomial(n,k)*n^(n-k-1)/2: k in [3..n]]: n in [3..12]]; // _G. C. Greubel_, May 16 2019

%o (Sage) [[factorial(k)*binomial(n,k)*n^(n-k-1)/2 for k in (3..n)] for n in (3..12)] # _G. C. Greubel_, May 16 2019

%o (GAP) Flat(List([3..12], n-> List([3..n], k-> Factorial(k)*Binomial(n,k) *n^(n-k-1)/2 ))); # _G. C. Greubel_, May 16 2019

%Y Row sums: A057500, columns: A053507, A065889.

%K easy,nonn,tabl

%O 3,2

%A _Vladeta Jovovic_, Oct 15 2004