login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130895
Denominator of Sum_{k=1..n} H(k)*H(n+1-k), where H(k) is the k-th harmonic number (Sum_{j=1..k} 1/j).
2
1, 1, 12, 3, 45, 18, 560, 2520, 8400, 225, 207900, 207900, 840840, 191100, 7761600, 50450400, 15437822400, 14034384, 214885440, 29331862560, 645300976320, 517068090, 742096122768, 463810076730, 4466319257400, 492206612040, 68908925685600, 11484820947600
OFFSET
1,3
COMMENTS
A130894(n)/A130895(n) also equals 2*Sum_{k=1..n} H(k)*(n+1-k)/(k+1) = Sum_{k=1..n} H(2,k)/(n+1-k), where H(2,k) = Sum_{j=1..k} H(j) = (k+1)*H(k) - k.
FORMULA
A130894(n)/A130895(n) = (n+2)*(2 - 2*H(n+2) + (H(n+2))^2 - G(n+2)), where G(n) = Sum_{k=1..n} 1/k^2.
MATHEMATICA
f[n_] := Sum[ HarmonicNumber[k] HarmonicNumber[n + 1 - k], {k, n}]; Table[ Denominator@ f@n, {n, 26}] (* Robert G. Wilson v, Jul 02 2007 *)
CROSSREFS
Cf. A130894.
Sequence in context: A112033 A248171 A258227 * A367431 A038329 A098909
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Jun 07 2007
EXTENSIONS
More terms from Robert G. Wilson v, Jul 02 2007
STATUS
approved