OFFSET
0,1
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..100
Index entries for linear recurrences with constant coefficients, signature (0,2).
FORMULA
From Ralf Stephan, Jul 16 2013: (Start)
Recurrence: a(n) = 2a(n-2), a(0)=12, a(1)=3.
G.f.: (6*x+24)/(1-2*x^2). (End)
MAPLE
A112033:=n->3*2^(floor(n/2) + 1 + (-1)^n); seq(A112033(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013
MATHEMATICA
Table[3*2^(Floor[n/2] + 1 + (-1)^n), {n, 0, 50}] (* Wesley Ivan Hurt, Nov 01 2013 *)
PROG
(PARI) a(n) = 3 * 2^(n\2 + 1 + (-1)^n); \\ Michel Marcus, Nov 02 2013
(Python)
def A112033(n): return 3*(1<<(n>>1)+(int(not n&1)<<1)) # Chai Wah Wu, Jan 17 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 27 2005
STATUS
approved