login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112033
a(n) = 3 * 2^(floor(n/2) + 1 + (-1)^n).
8
12, 3, 24, 6, 48, 12, 96, 24, 192, 48, 384, 96, 768, 192, 1536, 384, 3072, 768, 6144, 1536, 12288, 3072, 24576, 6144, 49152, 12288, 98304, 24576, 196608, 49152, 393216, 98304, 786432, 196608, 1572864, 393216, 3145728, 786432, 6291456, 1572864
OFFSET
0,1
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.
FORMULA
a(n) = 1 / abs(A112031(n)/A112032(n) - 2/3). (previous name)
a(n) = 3*2^A084964(n) = 3*A112032(n).
From Ralf Stephan, Jul 16 2013: (Start)
Recurrence: a(n) = 2a(n-2), a(0)=12, a(1)=3.
G.f.: (6*x+24)/(1-2*x^2). (End)
MAPLE
A112033:=n->3*2^(floor(n/2) + 1 + (-1)^n); seq(A112033(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013
MATHEMATICA
Table[3*2^(Floor[n/2] + 1 + (-1)^n), {n, 0, 50}] (* Wesley Ivan Hurt, Nov 01 2013 *)
PROG
(PARI) a(n) = 3 * 2^(n\2 + 1 + (-1)^n); \\ Michel Marcus, Nov 02 2013
(Python)
def A112033(n): return 3*(1<<(n>>1)+(int(not n&1)<<1)) # Chai Wah Wu, Jan 17 2023
CROSSREFS
Cf. A112030.
Sequence in context: A063609 A040139 A317312 * A248171 A258227 A130895
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 27 2005
STATUS
approved