login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130894
Numerator of Sum_{k=1..n} H(k)*H(n+1-k), where H(k) is the k-th harmonic number (Sum_{j=1..k} 1/j).
2
1, 3, 71, 29, 638, 349, 14139, 79913, 325421, 10418, 11302933, 13078889, 60461593, 15543383, 707713291, 5116885451, 1729792071433, 1726815331, 28878310103, 4284784940629, 102022822469387, 88130993047, 135875890206619, 90931468191287, 934812181407337
OFFSET
1,2
COMMENTS
A130894(n)/A130895(n) also equals 2*Sum_{k=1..n} H(k)*(n+1-k)/(k+1) = Sum_{k=1..n} H(2,k)/(n+1-k), where H(2,k) = Sum_{j=1..k} H(j) = (k+1)*H(k) - k.
LINKS
FORMULA
A130894(n)/A130895(n) = (n+2)*(2 - 2*H(n+2) + (H(n+2))^2 - G(n+2)), where G(n) = Sum_{k=1..n} 1/k^2.
MAPLE
R:= [seq(1/i, i=1..100)]:
S:= ListTools:-PartialSums(R):
f:= proc(n) local k; numer(add(S[k]*S[n+1-k], k=1..n)): end proc:
map(f, [$1..100]); # Robert Israel, Feb 27 2022
MATHEMATICA
f[n_] := Sum[ HarmonicNumber[k] HarmonicNumber[n + 1 - k], {k, n}]; Table[ Numerator@ f@n, {n, 24}] (* Robert G. Wilson v, Jul 02 2007 *)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Jun 07 2007
EXTENSIONS
More terms from Robert G. Wilson v, Jul 02 2007
STATUS
approved