login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065889
a(n) = number of unicyclic connected simple graphs whose cycle has length 4.
5
3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952, 1905131520000000000000000
OFFSET
4,1
LINKS
FORMULA
E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
a(n) = 3 * A053508(n). - Alois P. Heinz, Jan 09 2025
MATHEMATICA
Table[12*Binomial[n, 4]*n^(n-5), {n, 4, 25}] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) {a(n) = 12*binomial(n, 4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
(Magma) [12*Binomial(n, 4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
(Sage) [12*binomial(n, 4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
(GAP) List([4..25], n-> 12*Binomial(n, 4)*n^(n-5)); # G. C. Greubel, May 16 2019
CROSSREFS
A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).
A column of A098909, A053507.
Main diagonal of A144209.
Cf. A053508.
Sequence in context: A378777 A144659 A115490 * A183251 A001084 A137150
KEYWORD
nonn,changed
AUTHOR
Len Smiley, Nov 27 2001
STATUS
approved