login
A065889
a(n) = number of unicyclic connected simple graphs whose cycle has length 4.
5
3, 60, 1080, 20580, 430080, 9920232, 252000000, 7015381560, 212840939520, 6998969586180, 248180493969408, 9445533398437500, 384213343210045440, 16639691095281974160, 764619269867445288960, 37163398969133506235952
OFFSET
4,1
LINKS
FORMULA
E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).
a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - Vladeta Jovovic, Oct 26 2004
MATHEMATICA
Table[12*Binomial[n, 4]*n^(n-5), {n, 4, 25}] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) {a(n) = 12*binomial(n, 4)*n^(n-5)}; \\ G. C. Greubel, May 16 2019
(Magma) [12*Binomial(n, 4)*n^(n-5) : n in [4..25]]; // G. C. Greubel, May 16 2019
(Sage) [12*binomial(n, 4)*n^(n-5) for n in (4..25)] # G. C. Greubel, May 16 2019
(GAP) List([4..25], n-> 12*Binomial(n, 4)*n^(n-5)) # G. C. Greubel, May 16 2019
CROSSREFS
A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).
A column of A098909, A053507.
Main diagonal of A144209.
Sequence in context: A195550 A144659 A115490 * A183251 A001084 A137150
KEYWORD
nonn
AUTHOR
Len Smiley, Nov 27 2001
STATUS
approved