|
|
A001084
|
|
a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.
(Formerly M3167 N1284)
|
|
5
|
|
|
0, 3, 60, 1197, 23880, 476403, 9504180, 189607197, 3782639760, 75463188003, 1505481120300, 30034159217997, 599177703239640, 11953519905574803, 238471220408256420, 4757470888259553597, 94910946544782815520, 1893461460007396756803, 37774318253603152320540
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also 11*x^2+1 is a square. n=11 in PARI script below. - Cino Hilliard, Mar 08 2003
This sequence gives the values of y in solutions of the Diophantine equation x^2 - 11*y^2 = 1; the corresponding x values are in A001085. - Vincenzo Librandi, Nov 12 2010 [edited by Jon E. Schoenfield, May 04 2014]
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
"Questions D'Arithmetique", Question 3686, Solution by H.L. Mennessier, Mathesis, 65(4, Supplement) 1956, pp. 1-12.
|
|
LINKS
|
|
|
FORMULA
|
Limit_{n->oo} a(n)/a(n-1) = 10 + 3*sqrt(11); for all n in the sequence, 11*n^2 + 1 is a perfect square. - Gregory V. Richardson, Oct 06 2002
a(n) = 19*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 21*(a(n-1) - a(n-2)) + a(n-3). (End)
E.g.f.: exp(10*x)*sinh(3*sqrt(11)*x)/sqrt(11). - Stefano Spezia, Aug 16 2024
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{20, -1}, {0, 3}, 20] (* T. D. Noe, Dec 19 2011 *)
CoefficientList[Series[3*x/(1 - 20*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
|
|
PROG
|
(PARI) nxsqp1(m, n) = { for(x=1, m, y = n*x*x+1; if(issquare(y), print1(x" ")) ) }
(Magma) I:=[0, 3]; [n le 2 select I[n] else 20*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
(PARI) x='x+O('x^30); concat([0], Vec(3*x/(1 - 20*x + x^2))) \\ G. C. Greubel, Dec 20 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|