login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of unicyclic connected simple graphs whose cycle has length 4.
5

%I #23 Jan 09 2025 15:43:37

%S 3,60,1080,20580,430080,9920232,252000000,7015381560,212840939520,

%T 6998969586180,248180493969408,9445533398437500,384213343210045440,

%U 16639691095281974160,764619269867445288960,37163398969133506235952,1905131520000000000000000

%N a(n) = number of unicyclic connected simple graphs whose cycle has length 4.

%H Alois P. Heinz, <a href="/A065889/b065889.txt">Table of n, a(n) for n = 4..150</a>

%F E.g.f.: T^4/8, where T = T(x) is Euler's tree function (see A000169).

%F a(n) = (n-1)*(n-2)*(n-3)*n^(n-4)/2. - _Vladeta Jovovic_, Oct 26 2004

%F a(n) = 3 * A053508(n). - _Alois P. Heinz_, Jan 09 2025

%t Table[12*Binomial[n,4]*n^(n-5), {n,4,25}] (* _G. C. Greubel_, May 16 2019 *)

%o (PARI) {a(n) = 12*binomial(n,4)*n^(n-5)}; \\ _G. C. Greubel_, May 16 2019

%o (Magma) [12*Binomial(n,4)*n^(n-5) : n in [4..25]]; // _G. C. Greubel_, May 16 2019

%o (Sage) [12*binomial(n,4)*n^(n-5) for n in (4..25)] # _G. C. Greubel_, May 16 2019

%o (GAP) List([4..25], n-> 12*Binomial(n,4)*n^(n-5)); # _G. C. Greubel_, May 16 2019

%Y A065888 ( = 2*A065889) counts sagittal graphs with one cycle (length 4).

%Y A column of A098909, A053507.

%Y Main diagonal of A144209.

%Y Cf. A053508.

%K nonn,changed

%O 4,1

%A _Len Smiley_, Nov 27 2001