login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108298
Sum of the first 10^n terms in A097975. a(n) = sum_{m=1..10^n} t(m), where t(m) is the sum of the prime divisors of m that are greater than or equal to sqrt(m).
0
0, 30, 1797, 132946, 10034416, 790688821, 64867780292, 5492352229154, 475943074590494, 41984058676639733, 3755707610763952011, 339758793864093720073, 31019273006095379281810, 2853680710328414627392965, 264227600111858563511104972
OFFSET
0,2
COMMENTS
Does a(n+1)/a(n) converge?
EXAMPLE
The first 10^2 terms in A097975 sum to 1797, so a(2) = 1797.
MATHEMATICA
s = 0; k = 1; Do[l = Select[Select[Divisors[n], PrimeQ], # >= Sqrt[n]&]; If[Length[l] > 0, s += l[[1]]]; If[n == k, Print[s]; s = 0; k *= 10], {n, 1, 10^7}]
PROG
(PARI) a(n) = sum(m=1, 10^n, sumdiv(m, d, d*isprime(d)*(d>=sqrt(m)))); \\ Michel Marcus, Jul 07 2014
CROSSREFS
Cf. A097975.
Sequence in context: A089550 A007804 A295588 * A202384 A202369 A042743
KEYWORD
more,nonn
AUTHOR
Ryan Propper, Jul 24 2005
EXTENSIONS
a(2)-a(7) and the example corrected and a(8)-a(14) from Hiroaki Yamanouchi, Jul 07 2014
STATUS
approved